Development of an Agrobacterium-delivered codon-optimized CRISPR/Cas9 system for chickpea genome editing.
CRISPR/Cas9
Chickpea transformation
Codon optimization
Inference of CRISPR Edits (ICE)
PDS
Journal
Protoplasma
ISSN: 1615-6102
Titre abrégé: Protoplasma
Pays: Austria
ID NLM: 9806853
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
09
12
2022
accepted:
07
04
2023
medline:
7
8
2023
pubmed:
3
5
2023
entrez:
2
5
2023
Statut:
ppublish
Résumé
Chickpea is considered recalcitrant to in vitro tissue culture amongst all edible legumes. The clustered, regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based genome editing in chickpea can remove the bottleneck of limited genetic variation in this cash crop, which is rich in nutrients and protein. However, generating stable mutant lines using CRISPR/Cas9 requires efficient and highly reproducible transformation protocols. As an attempt to solve this problem, we developed a modified and optimized protocol for chickpea transformation. This study transformed the single cotyledon half-embryo explants using CaMV35S promoter to drive two marker genes (β-glucuronidase gene; GUS and green fluorescent protein; GFP) through binary vectors pBI101.2 and modified pGWB2, respectively. These vectors were delivered in the explants through three different strains of Agrobacterium tumefaciens, viz., GV3101, EHA105, and LBA4404. We found better efficiency with the strain GV3101 (17.56%) compared with two other strains, i.e., 8.54 and 5.43%, respectively. We recorded better regeneration frequencies in plant tissue culture for the constructs GUS and GFP, i.e., 20.54% and 18.09%, respectively. The GV3101 was further used for the transformation of the genome editing construct. For the development of genome-edited plants, we used this modified protocol. We also used a modified binary vector pPZP200 by introducing a CaMV35S-driven chickpea codon-optimized SpCas9 gene. The promoter of the Medicago truncatula U6.1 snRNA gene was used to drive the guide RNA cassettes. This cassette targeted and edited the chickpea phytoene desaturase (CaPDS) gene. A single gRNA was found sufficient to achieve high efficiency (42%) editing with the generation of PDS mutants with albino phenotypes. A simple, rapid, highly reproducible, stable transformation and CRISPR/Cas9-based genome editing system for chickpea was established. This study aimed to demonstrate this system's applicability by performing a gene knockout of the chickpea PDS gene using an improved chickpea transformation protocol for the first time.
Identifiants
pubmed: 37131068
doi: 10.1007/s00709-023-01856-4
pii: 10.1007/s00709-023-01856-4
doi:
Substances chimiques
Codon
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1437-1451Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Anuradha T, Jami S, Beena M, Kirti P (2008) Cotyledonary node and embryo axes as explants in legume transformation with special reference to peanut. In: Kirti PB (ed) Handbook of New Technologies for Genetic Improvement of Legumes. CRC Press, pp 253–271. https://doi.org/10.1201/9781439801352.ch17
doi: 10.1201/9781439801352.ch17
Ali SS, Yealla P, Sharmah BK (2009) Bar as a potential selectable marker gene to obtain putative transformants in Indian chickpea (Cicer Arietinum L.) cultivars. Transgenic Plant J 3:2–6
Ali MY, Krishnamurthy L, Saxena NP, Rupela OP, Kumar J, Johansen C (2002) Scope for genetic manipulation of mineral acquisition in chickpea. Plant Soil 245:123–134. https://doi.org/10.1023/A:1020616818106
doi: 10.1023/A:1020616818106
Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci 22(1):1–15. https://doi.org/10.3390/IJMS22010396
doi: 10.3390/IJMS22010396
Bae EK, Choi H, Choi JW, Lee H, Kim SG, Ko JH, Choi YI (2021) Efficient knockout of the phytoene desaturase gene in a hybrid poplar (Populus Alba × Populus Glandulosa) using the CRISPR/Cas9 system with a single gRNA. Transgenic Res 30(6):837–849. https://doi.org/10.1007/S11248-021-00272-9
doi: 10.1007/S11248-021-00272-9
pubmed: 34259977
Bhatnagar-Mathur P, Vadez V, Devi MJ, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606. https://doi.org/10.1007/s11032-009-9258-y
doi: 10.1007/s11032-009-9258-y
Bhowmik SSD, Cheng AH, Long H, Tan GZH, Hoang TML, Karbaschi MR, Williams B, Higgins TJV, Mundree SG (2019) Robust genetic transformation system to obtain non-chimeric transgenic chickpea. Front Plant Sci 10(April):524. https://doi.org/10.3389/FPLS.2019.00524/BIBTEX
doi: 10.3389/FPLS.2019.00524/BIBTEX
pubmed: 31105725
pmcid: 6498970
Chakraborti D, Sarkar A, Das S (2006) Efficient and rapid in vitro plant regeneration system for Indian cultivars of chickpea (Cicer Arietinum L.). Plant Cell Tissue Organ Cult 86:1 86 (1): 117–23 https://doi.org/10.1007/S11240-005-9072-0
Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153. https://doi.org/10.1111/MPP.12375
doi: 10.1111/MPP.12375
pubmed: 26808139
pmcid: 6638350
Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, and Chevreau E (2019) Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front Plant Sci 10 (February): 40. https://doi.org/10.3389/FPLS.2019.00040/BIBTEX
Chibbar N, Ambigaipalan P, Hoover R (2010) REVIEW: molecular diversity in pulse seed starch and complex carbohydrates and its role in human nutrition and health. Cereal Chem 87(4):342–352. https://doi.org/10.1094/CCHEM-87-4-0342
doi: 10.1094/CCHEM-87-4-0342
Christou P (1997) Rice transformation: bombardment. Plant Mol Biol 35(1):197–203. https://doi.org/10.1023/A:1005791230345
Conant D, Hsiau T, Rossi N, Oki J, Maures T, Waite K, Yang J, Joshi S, Kelso R, Holden K, Enzmann BL, Stoner R (2022) Inference of CRISPR edits from Sanger trace data. CRISPR J 5(1):123–130. https://doi.org/10.1089/crispr.2021.0113
doi: 10.1089/crispr.2021.0113
pubmed: 35119294
Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-Mediated targeted mutagenesis in populus in the first generation. Sci Rep 5(1):1–7. https://doi.org/10.1038/srep12217
doi: 10.1038/srep12217
Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79(2):348–359. https://doi.org/10.1111/tpj.12554
doi: 10.1111/tpj.12554
pubmed: 24836556
Fontana GS, Santini L, Caretto S, Frugis G, Mariotti D (1993) Genetic transformation in the grain legume Cicer Arietinum L. (Chickpea). Plant Cell Rep 12(4):194–198. https://doi.org/10.1007/BF00237052
doi: 10.1007/BF00237052
pubmed: 24197018
Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158. https://doi.org/10.1016/0014-4827(68)90403-5
doi: 10.1016/0014-4827(68)90403-5
pubmed: 5650857
Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8(August):1364. https://doi.org/10.3389/FPLS.2017.01364/BIBTEX
doi: 10.3389/FPLS.2017.01364/BIBTEX
pubmed: 28824692
pmcid: 5541054
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana Tabacum. Plant Mol Biol 87(1–2):99–110. https://doi.org/10.1007/s11103-014-0263-0
doi: 10.1007/s11103-014-0263-0
pubmed: 25344637
Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) MiR408 overexpression causes increased drought tolerance in chickpea. Gene 555(2):186–93. https://doi.org/10.1016/J.GENE.2014.11.002
doi: 10.1016/J.GENE.2014.11.002
pubmed: 25445265
Hooghvorst I, Cristoffanini CL, Nogués S (2019) Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon. Sci Rep 9:17077. https://doi.org/10.1038/S41598-019-53710-4
Huda S, Islam R, Bari M (2000) Shoot regeneration from internode derived callus of chickpea (Cicer arietinum L.). Int Chickpea Pigeonpea Newslett 7:28–29
Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Yadav M, Kant C, Sharma P, Bhatia S, Tyagi AK, Chattopadhya D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729
doi: 10.1111/tpj.12173
pubmed: 23489434
Jayanand B, Sudarsanam G, Sharma KK (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer Arietinum L.) by using axillary meristem explants derived from in vitro-germinated seedlings. In Vitro Cell Dev Biol Plant 39(2):171–179. https://doi.org/10.1079/IVP2002387
doi: 10.1079/IVP2002387
Ji J, Zhang C, Sun Z, Wang L, Duanmu D, Fan Q (2019) Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9. Int J Mol Sci 20(10):2471. https://doi.org/10.3390/ijms20102471
doi: 10.3390/ijms20102471
pubmed: 31109137
pmcid: 6566367
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/SgRNA-mediated targeted gene modification in Arabidopsis, Tobacco, Sorghum and Rice. Nucleic Acids Res 41(20):1–12. https://doi.org/10.1093/nar/gkt780
doi: 10.1093/nar/gkt780
Kar S, Johnson TM, Nayak P, Sen SK (1996) Efficient transgenic plant regeneration through Agrobacteriummediated transformation of Chickpea (Cicer arietinum L.). Plant Cell Rep 16:32–37. https://doi.org/10.1007/BF01275444
doi: 10.1007/BF01275444
pubmed: 24178649
Karkute SK, Singh AK, Gupta OP, Singh PM, Singh B (2017) CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci 8(September):1635. https://doi.org/10.3389/FPLS.2017.01635/BIBTEX
doi: 10.3389/FPLS.2017.01635/BIBTEX
pubmed: 28970844
pmcid: 5609112
Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, Kathen AD, Pickardt T, Schieder O (2000) Agrobacterium mediated transformation of chickpea (Cicer Arietinum L.) embryo axes. Plant Cell Rep 19(3):235–240. https://doi.org/10.1007/S002990050005
doi: 10.1007/S002990050005
pubmed: 30754901
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013a) Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nat Biotechnol 31(8):688. https://doi.org/10.1038/NBT.2654
doi: 10.1038/NBT.2654
pubmed: 23929339
pmcid: 4078740
Li W, Teng F, Li T, Zhou Q (2013b) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31(8):684–686. https://doi.org/10.1038/nbt.2652
doi: 10.1038/nbt.2652
pubmed: 23929337
Liu J, Gunapati S, Mihelich NT, Stec AO, Michno JM, Stupar RM (2019) Genome editing in soybean with CRISPR/Cas9. Methods Mol Biol 1917:217–234. https://doi.org/10.1007/978-1-4939-8991-1_16
doi: 10.1007/978-1-4939-8991-1_16
pubmed: 30610639
Liu Y, Schiff M, Kumar SPD (2002) Virus-induced gene silencing in tomato. Plant J 31(6):777–786. https://doi.org/10.1046/J.1365-313X.2002.01394.X
doi: 10.1046/J.1365-313X.2002.01394.X
pubmed: 12220268
Meng Y, Hou Y, Wang H, Ji R, Liu B, Wen J, Niu L, Lin H (2017) Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Rep 36:371–374
doi: 10.1007/s00299-016-2069-9
pubmed: 27834007
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284
doi: 10.1016/j.molp.2015.04.007
pubmed: 25917172
Mandal D, Sinharoy S (2019) A toolbox for nodule development studies in chickpea: a hairy-root transformation protocol and an efficient laboratory strain of Mesorhizobium sp. Mol Plant Microbe Interact 32:367–378
doi: 10.1094/MPMI-09-18-0264-TA
pubmed: 30398908
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–36. https://doi.org/10.1038/cr.2013.123
doi: 10.1038/cr.2013.123
pubmed: 23999856
pmcid: 3790239
Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucl Aci Res 42 (Issue W1):W401–W407. https://doi.org/10.1093/NAR/GKU410
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/J.1399-3054.1962.TB08052.X
doi: 10.1111/J.1399-3054.1962.TB08052.X
Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780. https://doi.org/10.3389/FPLS.2017.01780/BIBTE
doi: 10.3389/FPLS.2017.01780/BIBTE
pubmed: 29093724
pmcid: 5651273
Pal P, Dwivedi V, Gupta SK, Saxena S, Pandey A, Chattopadhyay D (2023) Biochemical analysis of anthocyanin and proanthocyanidin and their regulation in determining chickpea flower and seed coat colour. J Exp Bot 74:130–148
doi: 10.1093/jxb/erac392
pubmed: 36205079
Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Chen L, Lu G (2016) CRISPR/Cas9-Mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6(1):1–9. https://doi.org/10.1038/srep24765
Pandey V, Verma S, Bhatia S (2017) Over-expression of CarABI3 gene in chickpea through Agrobacterium-mediated transformation to understand the dynamics of chickpea seed development. Conference: National Symposium on ‘Plant Biotechnology: Current Perspectives on Medicinal and Crop Plants’At: IICB, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032
Parween S, Nawaz K, Roy R, Pole AK, Suresh BV, Misra G et al (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806. https://doi.org/10.1038/srep12806
Pennisi E (2013) The CRISPR Craze. Science Am Assoc Adv Sci. https://doi.org/10.1126/science.341.6148.833
Polisetty R, Paul V, Deveshwar JJ, Khetarpal S, Suresh K, Chandra R (1997) Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer Arietinum L.). Plant Cell Rep 16(8):565–571. https://doi.org/10.1007/BF01142325
doi: 10.1007/BF01142325
pubmed: 30727580
Polowick PL, Baliski DS, Mahon JD (2004) Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. Plant Cell Rep 23:485–491. https://doi.org/10.1007/s00299-004-0857-0
doi: 10.1007/s00299-004-0857-0
pubmed: 15503035
Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167(2):195–206. https://doi.org/10.1016/J.PLANTSCI.2004.03.027
doi: 10.1016/J.PLANTSCI.2004.03.027
Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17(5):471–82. https://doi.org/10.1038/cr.2007.40
doi: 10.1038/cr.2007.40
pubmed: 17486124
Saxena NP, Krishnamurthy L, Johansen C (1993) Registration of a drought resistant chickpea germplasm. Crop Sci 33:1424
doi: 10.2135/cropsci1993.0011183X003300060088x
Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018. https://doi.org/10.1073/pnas.81.24.8014
doi: 10.1073/pnas.81.24.8014
pubmed: 6096873
pmcid: 392284
Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer Arietinum L.) with Bacillus Thuringiensis Cry1Ac gene for resistance against pod borer insect Helicoverpa Armigera. Plant Sci 168(4):1135–1146. https://doi.org/10.1016/J.PLANTSCI.2004.12.015
doi: 10.1016/J.PLANTSCI.2004.12.015
Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14(1):73–82. https://doi.org/10.1023/B:MOLB.0000037996.01494.12
doi: 10.1023/B:MOLB.0000037996.01494.12
Senthil G, Williamson B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer Arietinum L.). Plant Cell Rep 23(5):297–303. https://doi.org/10.1007/S00299-004-0854-3/TABLES/4
doi: 10.1007/S00299-004-0854-3/TABLES/4
pubmed: 15455257
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. https://doi.org/10.1038/nbt.2650
doi: 10.1038/nbt.2650
pubmed: 23929338
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945. https://doi.org/10.1104/pp.15.00793
doi: 10.1104/pp.15.00793
pubmed: 26269544
pmcid: 4587463
Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y et al (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36(3):399–406. https://doi.org/10.1007/S00299-016-2089-5/FIGURES/3
doi: 10.1007/S00299-016-2089-5/FIGURES/3
pubmed: 27995308
Upadhyaya HD, Thudi M, Dronavalli N, Gujaria N, Singh S, Sharma S, Varshney RK (2011) Genomic tools and germplasm diversity for chickpea improvement. Plant Genet Resour 9(1):45–58. https://doi.org/10.1017/S1479262110000468
doi: 10.1017/S1479262110000468
Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12(2):202–210. https://doi.org/10.1016/J.PBI.2008.12.004
doi: 10.1016/J.PBI.2008.12.004
pubmed: 19157958
Varshney R, Song C, Saxena R et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246
doi: 10.1038/nbt.2491
pubmed: 23354103
Wang L, Rubio MC, Xin X, Zhang B, Fan Q, Wang Q, Ning G, Becana M, Duanmu D (2019) CRISPR/Cas9 knockout of Leghemoglobin genes in Lotus Japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. New Phytol 224(2):818–832. https://doi.org/10.1111/NPH.16077
doi: 10.1111/NPH.16077
pubmed: 31355948
Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327–339. https://doi.org/10.1186/s12870-014-0327-y
doi: 10.1186/s12870-014-0327-y
pubmed: 25432517
pmcid: 4262988
Yu Z, Chen Q, Chen W, Zhang X, Mei F, Zhang P, Zhao M et al (2018) Multigene editing via CRISPR/Cas9 guided by a single-SgRNA seed in Arabidopsis. J Integr Plant Biol 60(5):376–381. https://doi.org/10.1111/JIPB.12622
doi: 10.1111/JIPB.12622
pubmed: 29226588