Bioethanol production from sorghum grain with Zymomonas mobilis: increasing the yield and quality of raw distillates.

Zymomonas mobilis fermentation granular starch sorghum grains volatile by-products

Journal

Journal of the science of food and agriculture
ISSN: 1097-0010
Titre abrégé: J Sci Food Agric
Pays: England
ID NLM: 0376334

Informations de publication

Date de publication:
Sep 2023
Historique:
revised: 22 03 2023
received: 07 02 2023
accepted: 05 05 2023
medline: 2 8 2023
pubmed: 5 5 2023
entrez: 5 5 2023
Statut: ppublish

Résumé

The present study aimed to demonstrate the superiority of bioethanol yield and its quality from sorghum using the granular starch degrading enzyme Stargen™ 002 over simultaneous saccharification and fermentation, and separate hydrolysis and fermentation using Zymomonas mobilis CCM 3881 and Ethanol Red® yeast. Bacteria were found to produce ethanol at higher yield than the yeast in all fermentations. The highest ethanol yield was obtained with Z. mobilis during 48 h of simultaneous saccharification and fermentation (83.85% theoretical yield) and fermentation with Stargen™ 002 (81.27% theoretical yield). Pre-liquefaction in fermentation with Stargen™ 002 did not improve ethanol yields for both Z. mobilis and Saccharomyces cerevisiae. Chromatographic analysis showed twice less total volatile compounds in distillates obtained after bacterial (3.29-5.54 g L The present study emphasizes the great potential of bioethanol production from sorghum with Z. mobilis using granular starch hydrolyzing enzyme Stargen™ 002, which leads to reduced water and energy consumption, especially when energy sources are strongly related to global climate change. © 2023 Society of Chemical Industry.

Sections du résumé

BACKGROUND BACKGROUND
The present study aimed to demonstrate the superiority of bioethanol yield and its quality from sorghum using the granular starch degrading enzyme Stargen™ 002 over simultaneous saccharification and fermentation, and separate hydrolysis and fermentation using Zymomonas mobilis CCM 3881 and Ethanol Red® yeast.
RESULTS RESULTS
Bacteria were found to produce ethanol at higher yield than the yeast in all fermentations. The highest ethanol yield was obtained with Z. mobilis during 48 h of simultaneous saccharification and fermentation (83.85% theoretical yield) and fermentation with Stargen™ 002 (81.27% theoretical yield). Pre-liquefaction in fermentation with Stargen™ 002 did not improve ethanol yields for both Z. mobilis and Saccharomyces cerevisiae. Chromatographic analysis showed twice less total volatile compounds in distillates obtained after bacterial (3.29-5.54 g L
CONCLUSION CONCLUSIONS
The present study emphasizes the great potential of bioethanol production from sorghum with Z. mobilis using granular starch hydrolyzing enzyme Stargen™ 002, which leads to reduced water and energy consumption, especially when energy sources are strongly related to global climate change. © 2023 Society of Chemical Industry.

Identifiants

pubmed: 37144348
doi: 10.1002/jsfa.12688
doi:

Substances chimiques

Ethanol 3K9958V90M
Starch 9005-25-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6080-6094

Informations de copyright

© 2023 Society of Chemical Industry.

Références

Castro E, Nievesa IU, Rondóna V, Saguesa WJ, Fernández-Sandovala MT, Yomanoc LP et al., Potential for ethanol production from different sorghum cultivars. Ind Crops Prod 109:367-373 (2017). https://doi.org/10.1016/j.indcrop.2017.08.050.
Nghiem NP, Montanti J and Johnston DB, Sorghum as a renewable feedstock for production of fuels and industrial chemicals. AIMS Bioeng 75-91:75-91 (2016). https://doi.org/10.3934/bioeng.2016.1.75.
Nkomba EZ, van Rensburg E, Chimphango AFA and Görgens JF, The influence of sorghum grain decortication on bioethanol production and quality of the distillers' dried grains with solubles using cold and conventional warm starch processing. Bioresour Technol 203:181-189 (2016). https://doi.org/10.1016/j.biortech.2015.12.045.
Prażak R, Prospects for sorghum cultivation in Poland. Acta Agrobot 69:1661 (2016). https://doi.org/10.5586/aa.1661.
Safian N, Naderi MR, Torabi M, Soleymani A and Salemi HR, Corn (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench) yield and nutritional quality affected by drought stress. Biocatal Agric Biotechnol 45:102486 (2022). https://doi.org/10.1016/j.bcab.2022.102486.
Stamenković OS, Siliveru K, Veljković VB, Banković-Ilić IB, Tasić MB, Ciampitti IA et al., Production of biofuels from sorghum. Renew Sustain Energy Rev 124:109769 (2020). https://doi.org/10.1016/j.rser.2020.109769.
Stefoska-Needham A, Beck EJ, Johnson SK and Tapsell LC, Sorghum: an underutilized cereal whole grain with the potential to assist in the prevention of chronic disease. Food Rev Int 31:401-437 (2015). https://doi.org/10.1080/87559129.2015.1022832.
Althwab S, Carr TP, Weller CL, Dweikat IM and Schlegel V, Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Res Int 77:349-359 (2015). https://doi.org/10.1016/j.foodres.2015.08.011.
Li J, Zhao R, Xu Y, Wu X, Bean SR and Wang D, Fuel ethanol production from starchy grain and other crops: an overview on feedstocks, affecting factors, and technical advances. Renew Energ 188:223-239 (2022). https://doi.org/10.1016/j.renene.2022.02.038.
Mundia CW, Secchi S, Akamani K and Wang G, A regional comparison of factors affecting global sorghum production: the case of North America, Asia and Africa's Sahel. MDPI, Sustainability 11:2135 (2019). https://doi.org/10.3390/su11072135.
Awika JM and Rooney LW, Sorghum phytochemicals and their potential in-past on human health. Phytochemistry 65:1199-1221 (2004). https://doi.org/10.1016/j.phytochem.2004.04.001.
Devos RJB and Colla LM, Simultaneous saccharification and fermentation to obtain bioethanol: a bibliometric and systematic study. Bioresour Technol Rep 17:100924 (2022). https://doi.org/10.1016/j.biteb.2021.100924.
Białas W, Czerniak A and Szymanowska-Powałowska D, Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production. Acta Biochim Pol 61:153-162 (2014). https://doi.org/10.18388/abp.2014_1938.
Sapińska E, Balcerek M and Pielech-Przybylska K, Alcoholic fermentation of high-gravity corn mashes with the addition of supportive enzymes. J Chem Technol Biotechnol 88:2152-2158 (2013). https://doi.org/10.1002/jctb.4078.
Szymanowska-Powałowska D, Lewandowicz G, Kubiak P and Błaszczak W, Stability of the process of simultaneous saccharification and fermentation of corn flour. The effect of structural changes of starch by stillage recycling and scaling up of the process. Fuel 119:328-334 (2014). https://doi.org/10.1016/j.fuel.2013.11.034.
Białas W, Wojciechowska D, Szymanowska D and Grajek W, Optimization of simultaneous saccharification and fermentation of the native starch by using response surface method. Australas Biotechnol 4:183-199 (2009).
Strąk E and Balcerek M, Selected technologies used in the distillation industry. Acta Sci Pol Biotechnol 14:33-44 (2015).
Buruiana CT, Georgescu L, Isticioaia SF, Constantin OE, Vizireanu C, Dinica RM et al., Insights on monosaccharides and bioethanol production from sweet sorghum stalks using dilute acid pretreatment. MDPI, Processes 8:1486 (2020). https://doi.org/10.3390/pr8111486.
Fernandes G, Braga TG, Fischer J, Parrella RAC, de Resende MM and Cardoso VL, Evaluation of potential ethanol production and nutrients for four varieties of sweet sorghum during maturation. Renew Energy 71:518-524 (2014). https://doi.org/10.1016/j.renene.2014.05.033.
Larnaudie V, Rochon E, Ferrari MD and Lareo C, Energy evaluation of fuel bioethanol production from sweet sorghum using very high gravity (VHG) conditions. Renew Energy 88:280-287 (2016). https://doi.org/10.1016/j.renene.2015.11.041.
Regassa TH and Wortmann CS, Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenergy 64:348-355 (2014). https://doi.org/10.1016/j.biombioe.2014.03.052.
Thawaro N, Toomsan B and Kaewpradit W, Sweet sorghum and upland rice: alternative preceding crops to ameliorate ethanol production and soil sustainability within the sugarcane cropping system. Sugar Tech 19:64-71 (2017). https://doi.org/10.1007/s12355-016-0437-y.
Johnston DB, Grain sorghum fractionation in a modified dry grind ethanol process that includes production of an enriched protein fraction. Cereal Chem 96:920-926 (2019). https://doi.org/10.1002/cche.10195.
Ramirez MB, Ferrari MD and Lareo C, Fuel ethanol production from commercial grain sorghum cultivars with different tannin content. J Cereal Sci 69:125-131 (2016). https://doi.org/10.1016/j.jcs.2016.02.019.
Sebayang AH, Masjuki HH, Ong HC, Dharma S, Silitonga AS, Kusumo F et al., Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Ind Crops Prod 97:146-155 (2017). https://doi.org/10.1016/j.indcrop.2016.11.064.
Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M et al., Grain sorghum is a viable feedstock for ethanol production. J Ind Microbiol Biotechnol 35:313-320 (2008). https://doi.org/10.1007/s10295-008-0313-1.
Nikolić S, Mojović L, Rakin M, Pejin J, Djukić-Vuković A and Bulatović M, Simultaneous enzymatic saccharification and fermentation (SSF) in bioethanol production from corn meal by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. J Chem Sci Technol 1:23-28 (2012).
Pietrzak W and Kawa-Rygielska J, Ethanol fermentation of waste bread using granular starch hydrolyzing enzyme: effect of raw material pretreatment. Fuel 134:250-256 (2014). https://doi.org/10.1016/j.fuel.2014.05.081.
Szymanowska D and Grajek W, Fed-batch simultaneous saccharification and ethanol fermentation of native corn starch. Acta Sci Pol, Technol Aliment 8:5-16 (2009).
Johnston DJ and Moreau RA, A comparison between corn and grain sorghum fermentation rates, distillers dried grains with solubles composition, and lipid profiles. Bioresour Technol 226:118-124 (2017). https://doi.org/10.1016/j.biortech.2016.12.001.
Ayodele BV, Alsaffar MA and Mustapa SI, An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod 245:118857 (2020). https://doi.org/10.1016/j.jclepro.2019.118857.
Alvarez MM, Peerez-Carillo E and Serna-Saldivar SO, Effect of decortication and protease treatment on the kinetics of liquefaction, saccharification, and ethanol production from sorghum. Chem Technol Biotechnol 85:1122-1129 (2010). https://doi.org/10.1002/jctb.2408.
Díaz VHG and Willis MJ, Ethanol production using Zymomonas mobilis: development of a kinetic model describing glucose and xylose co-fermentation. Biomass Bioenergy 123:41-50 (2019). https://doi.org/10.1016/j.biombioe.2019.02.004.
He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL et al., Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels 7:101 (2014). https://doi.org/10.1186/1754-6834-7-101.
Panesar PS, Marwaha SS and Kennedy JF, Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biotechnol 81:623-635 (2006). https://doi.org/10.1002/jctb.1448.
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD et al., Zymomonas mobilis as a model system for production of biofuels and biochemical. Microb Biotechnol 9:699-717 (2016). https://doi.org/10.1111/1751-7915.12408.
Ajit A, Sulaiman AZ and Chisti Y, Production of bioethanol by Zymomonas mobilis in high-gravity extractive fermentations. Food Bioprod Process 102:123-135 (2017). https://doi.org/10.1016/j.fbp.2016.12.006.
Karsch T, Stahl U and Esser K, Ethanol production by Zymomonas and saccharomyces, advantages and disadvantages. Eur J Appl Microbiol Biotechnol 18:387-391 (1983). https://doi.org/10.1007/BF00504750.
Pérez-Carrillo E, Cortés-Callejas ML, Sabillón-Galeas LE, Montalvo-Villarreal JL, Canizo JR, Moreno-Zepeda MG et al., Detrimental effect of increasing sugar concentrations on ethanol production from maize or decorticated sorghum mashes fermented with Saccharomyces cerevisiae or Zymomonas mobilis. Biotechnol Lett 33:301-307 (2011). https://doi.org/10.1007/s10529-010-0448-9.
Amin G, Van den Eynde E and Verachtert H, Determination of by-products formed during the ethanolic fermentation, using batch and immobilized cell systems of Zymomonas mobilis and Saccharomyces bayanus. Europ J Appl Microbiol Biotechnol 18:1-5 (1983). https://doi.org/10.1007/BF00508121.
Nowak J, Comparison of polish industrial distillery yeast with ethanol producing bacteria Zymomonas mobilis. Food Sci Technol 4:1-11 (2001).
Palamae S, Choorit W, Chatsungnoen T and Chisti Y, Simultaneous nitrogen fixation and ethanol production by Zymomonas mobilis. J Biotechnol 314-315:41-52 (2020). https://doi.org/10.1016/j.jbiotec.2020.03.016.
Rogers PL and Lee KJ, The Zymomonas process for ethanol production. Process Biochem 15:7-11 (1980).
Todhanakansem T, Wu B and Simeon S, Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World J Microbiol Biotechnol 36:112 (2020). https://doi.org/10.1007/s11274-020-02885-4.
Khalil SRA, Abdelhafez AA and Amer EAM, Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Ann Agr Sci 60:317-324 (2015). https://doi.org/10.1016/j.aoas.2015.10.005.
Ndaba B, Chiyanzu I, Marx S and Obiero G, Effect of Saccharomyces cerevisiae and Zymomonas mobilis on the co-fermentation of sweet sorghum bagasse hydrolysates pretreated under varying conditions. Biomass Bioenergy 71:350-356 (2014). https://doi.org/10.1016/j.biombioe.2014.09.022.
Szambelan K, Nowak J, Szwengiel A and Jeleń H, Comparison of sorghum and maize raw distillates: factors affecting ethanol efficiency and volatile by-products profile. J Cereal Sci 91:102863 (2020). https://doi.org/10.1016/j.jcp.2019.102863.
Hölm J, Björck I and Drews A, A rapid method for the analysis of starch. Starch-Stärke 38:224-226 (1986). https://doi.org/10.1002/star.19860380704.
Krełowska-Kułas M, Examining the Quality of Food Products. PWE, Warsaw (1993).
Szambelan K, Szwengiel A, Nowak J, Jeleń H and Frankowski J, Low-waste technology for the production of bioethanol from sorghum grain: comparison of Zymomonas mobilis and Saccharomyces cerevisiae in fermentation with stillage reusing. J Clean Prod 352:131607 (2022). https://doi.org/10.1016/j.jclepro.2022.131607.
ISO 1388/2, Ethanol for industrial use. Methods of test. Part 2: Detection of alkalinity or determination of acidity to phenolphthalein (1981).
He X, Gaca A and Jeleń H, Determination of volatile compounds in baijiu using simultaneous chromatographic analysis on two columns. J Inst Brewing 126:206-212 (2020). https://doi.org/10.1002/jib.603.
Polish Standard PN-A-79523, Raw spirits (2002).
Regulation (EC) No 110/2008 of the European Parliament and of the Council of 15 January 2008 on the definition, description, presentation, labelling and the protection of geographical indications of spirit drinks and repealing Council Regulation (EEC) No 1576/89.
Stanisz A, An Accessible Statistics Course Using STATISTICA PL with Examples from Medicine. StatSoft Poland, Krakow (2007).
Rabiej M, Statistics with Statistica Software. Helion, Poland (2012).
Strąk-Graczyk E and Balcerek M, Effect of pre-hydrolysis on simultaneous saccharification and fermentation of native rye starch. Food Bioproc Tech 13:923-936 (2020). https://doi.org/10.1007/s11947-020-02434-9.
Balcerek M and Pielech-Przybylska K, Effect of simultaneous saccharification and fermentation conditions of native triticale starch on the dynamics and efficiency of process and composition of the distillates obtained. J Chem Technol Biotechnol 88:615-622 (2012). doi.10.1002/jctb.3873.
Weiss T, Zhao J, Hu R, Liu M, Li Y, Zheng Y et al., Production of distilled spirits using grain sorghum through liquid fermentation. J Agric Food Res 9:100314 (2022). https://doi.org/10.1016/j.jafr.2022.100314.
Zhang Q, Nurhayati D, Cheng CL, Lo YC, Nagarajan D, Hu J et al., Ethanol production by modified polyvinyl alcohol-immobilized Zymomonas mobilis and in situ membrane distillation under very high gravity condition. Appl Energ 202:1-5 (2017). https://doi.org/10.1016/j.apenergy.2017.05.105.
Balcerek M, Pielech-Przybylska K, Dziekońska-Kubczak U, Patelski P and Strąk E, Fermentation results and chemical composition of agricultural distillates obtained from rye and barley grains and the corresponding malts as a source of amylolytic enzymes and starch. Molecules 21:1320 (2016). https://doi.org/10.3390/molecules21101320.
Pietruszka M and Szopa JS, Agricultural distillates from polish varieties of rye. Czech J Food Sci 32:406-411 (2014). https://doi.org/10.17221/490/2013-CJFS.
Kłosowski G, Mikulski D, Czupryński B and Kotarska K, Characterisation of fermentation of high-gravity maize mashes with the application of pullanase, proteolytic enzymes and enzymes degrading non-starch polysaccharides. J Biosci Bioeng 109:466-471 (2010). https://doi.org/10.1016/j.jbiosc.2009.10.024.
Stanisz M, Sapińska E and Pielech-Przybylska K, Characteristics of impurities found in raw spirits. Sci J Tech Univ Lodz, Food Chem Biotechnol 1058:105-121 (2009).
Sapińska E, Balcerek M, Pielech-Przybylska K and Stanisz M, The impact of treatment of cereal mashes with hydrolases of non-starch polysaccharides and pullanese on the chemical composition of the obtained distillates. J Inst Brewing 120:105-110 (2014). https://doi.org/10.1002/jib.119.
http://rudolfresearch.com/products/density-meters/ddm-2911/

Auteurs

Katarzyna Szambelan (K)

Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.

Artur Szwengiel (A)

Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.

Jacek Nowak (J)

Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.

Jakub Frankowski (J)

Department of Bioeconomy, Institute of Natural Fibres and Medicinal Plants-National Research Institute, Poznań, Poland.

Henryk Jeleń (H)

Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.

Articles similaires

Fragaria Light Plant Leaves Osmosis Stress, Physiological
Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation

Classifications MeSH