Genome-wide association study reveals useful QTL and genes controlling the fatty acid composition in rice bran oil using Vietnamese rice landraces.
Fatty acids
Genome-wide association study
Oryza sativa
Quantitative trait loci
Rice bran oil
Journal
Functional & integrative genomics
ISSN: 1438-7948
Titre abrégé: Funct Integr Genomics
Pays: Germany
ID NLM: 100939343
Informations de publication
Date de publication:
09 May 2023
09 May 2023
Historique:
received:
15
02
2023
accepted:
28
04
2023
revised:
25
04
2023
medline:
10
5
2023
pubmed:
9
5
2023
entrez:
8
5
2023
Statut:
epublish
Résumé
In rice (Oryza sativa L.), rice bran contains valuable nutritional constituents, such as high unsaturated fat content, tocotrienols, inositol, γ-oryzanol, and phytosterols, all of which are of nutritional and pharmaceuticals interest. There is now a rising market demand for rice bran oil, which makes research into their content and fatty acid profile an area of interest. As it is evident that lipid content has a substantial impact on the eating, cooking, and storage quality of rice, an understanding of the genetic mechanisms that determine oil content in rice is of great importance, equal to that of rice quality. Therefore, in this study, we performed a genome-wide association study on the composition and oil concentration of 161 Vietnamese rice varieties. Five categories of fatty acids in rice bran were discovered and the bran oil concentration profile in different rice accessions was identified. We also identified 229 important markers related to the fatty acid composition of bran oil, distributed mainly on chromosomes 1 and 7. Seven quantitative trait loci and five potential genes related to unsaturated fatty acid content were detected, including OsKASI, OsFAD, OsARF, OsGAPDH, and OsMADS29. These results provide insights into the genetic basis of rice bran oil composition, which is pivotal to the metabolic engineering of rice plants with desirable bran oil content through candidate genes selection.
Identifiants
pubmed: 37156920
doi: 10.1007/s10142-023-01080-6
pii: 10.1007/s10142-023-01080-6
doi:
Substances chimiques
Fatty Acids
0
Rice Bran Oil
LZO6K1506A
Types de publication
Letter
Langues
eng
Sous-ensembles de citation
IM
Pagination
150Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abe K, Araki E, Suzuki Y et al (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem 131:58–62. https://doi.org/10.1016/J.PLAPHY.2018.04.033
doi: 10.1016/J.PLAPHY.2018.04.033
pubmed: 29735369
Ae WL, Zeng J, Gonghao AE et al (2009) QTLs identification of crude fat content in brown rice and its genetic basis analysis using DH and two backcross populations. Euphytica 169:197–205. https://doi.org/10.1007/S10681-009-9922-7
doi: 10.1007/S10681-009-9922-7
Akgul R, Morgil H, Kizilkaya IT et al (2022) Transcriptomic and fatty acid analyses of Neochloris aquatica grown under different nitrogen concentration. Funct Integr Genomics 22:407–421. https://doi.org/10.1007/s10142-022-00838-8
doi: 10.1007/s10142-022-00838-8
pubmed: 35286570
Akhter M, Haider Z, Muzammil HS et al (2016) Free fatty acid profiling of rice bran oils for improving shelf life through parboiling and different treatments. J Nutr Food Sci 6:2. https://doi.org/10.4172/2155-9600.1000449
doi: 10.4172/2155-9600.1000449
Ariizumi T, Kishitani S, Inatsugi R et al (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol 43:751–758. https://doi.org/10.1093/PCP/PCF087
doi: 10.1093/PCP/PCF087
pubmed: 12154137
Awad-Allah MMA, Mohamed AH, El-Bana MA et al (2022) Assessment of genetic variability and bran oil characters of new developed restorer lines of rice (Oryza sativa L.). Genes (Basel) 13:509. https://doi.org/10.3390/genes13030509
doi: 10.3390/genes13030509
pubmed: 35328063
Bi H, Yang B (2017) Gene editing with TALEN and CRISPR/Cas in rice. Prog Mol Biol Transl Sci 149:81–98. https://doi.org/10.1016/BS.PMBTS.2017.04.006
doi: 10.1016/BS.PMBTS.2017.04.006
pubmed: 28712502
Bligh EG, Dyer WJ (1959) Canadian Journal of Biochemistry and Physiology. Can J Biochem Physiol 37:911–917
doi: 10.1139/y59-099
pubmed: 13671378
Cho K-S, Kim H-J, Lee J-H et al (2006) Determination of fatty acid composition in 120 Korean native rice cultivars. HortScience 41:1082
doi: 10.21273/HORTSCI.41.4.1082D
Çolak NG, Eken NT, Ülger M et al (2023) Mapping of quantitative trait loci for the nutritional value of fresh market tomato. Funct Integr Genomics 23(2):121. https://doi.org/10.1007/s10142-023-01045-9
doi: 10.1007/s10142-023-01045-9
pubmed: 37039853
Ding W, Lin L, Zhang B et al (2015) OsKASI, a β-ketoacyl-[acyl carrier protein] synthase I, is involved in root development in rice (Oryza sativa L.). Planta 242:203–213. https://doi.org/10.1007/s00425-015-2296-2
doi: 10.1007/s00425-015-2296-2
pubmed: 25893869
Fujiwara Y (2019) Preventive effect of polyunsaturated fatty acid and vitamin E in rice bran oil on lifestyle-related diseases. J Nutr Sci Vitaminol 65:S34–S37. https://doi.org/10.3177/JNSV.65.S34
doi: 10.3177/JNSV.65.S34
pubmed: 31619641
Gain H, Nandi D, Kumari D et al (2022) Genome-wide identification of CAMTA gene family members in rice (Oryza sativa L.) and in silico study on their versatility in respect to gene expression and promoter structure. Funct Integr Genomics 22:193–214. https://doi.org/10.1007/s10142-022-00828-w
doi: 10.1007/s10142-022-00828-w
pubmed: 35169940
Goffman FD, Pinson S, Bergman C (2003) Genetic diversity for lipid content and fatty acid profile in rice bran. J Am Oil Chem Soc 80:485–490. https://doi.org/10.1007/S11746-003-0725-X
He D, Liu L (2019) Analytical aspects of rice bran oil. Elsevier https://sci-hub.hkvisa.net/10.1016/b978-0-12-812828-2.00007-x
doi: 10.1016/B978-0-12-812828-2.00007-X
Huang X, Wei X, Sang T et al (2010) Genome-wide asociation studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967. https://doi.org/10.1038/ng.695
doi: 10.1038/ng.695
pubmed: 20972439
Hussain S, Yin H, Peng S et al (2016) Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front Plant Sci 7:1125. https://doi.org/10.3389/FPLS.2016.01125/BIBTEX
doi: 10.3389/FPLS.2016.01125/BIBTEX
pubmed: 27516766
pmcid: 4964843
Kawahara Y, de la Bastide M, Hamilton JP et al (2013) Improvement of the oryza sativa nipponbare reference genome using next generation sequence and optical map data. Rice 6:3–10. https://doi.org/10.1186/1939-8433-6-4/FIGURES/2
doi: 10.1186/1939-8433-6-4/FIGURES/2
Khatoon S, Gopalakrishna AG (2004) Fat-soluble nutraceuticals and fatty acid composition of selected Indian rice varieties. J Am Oil Chem Soc 81:939–943. https://doi.org/10.1007/S11746-004-1005-5
doi: 10.1007/S11746-004-1005-5
Kohli PS, Kumar Verma P, Verma R et al (2020) Genome-wide association study for phosphate deficiency responsive root hair elongation in chickpea. Funct Integr Genomics 20:775–786. https://doi.org/10.1007/s10142-020-00749-6
doi: 10.1007/s10142-020-00749-6
pubmed: 32892252
Lai OM, Jacoby JJ, Leong WF, Lai WT (2019) Nutritional studies of rice bran oil. Rice Bran and Rice Bran Oil:19–54. https://doi.org/10.1016/B978-0-12-812828-2.00002-0
Lemus C, Angelis A, Halabalaki M, Skaltsounis AL (2014) γ-Oryzanol: an attractive bioactive component from rice bran. In: Wheat and rice in disease prevention and health. Academic Press, pp 409–430. https://doi.org/10.1016/B978-0-12-401716-0.00032-5
doi: 10.1016/B978-0-12-401716-0.00032-5
Liu HL, Yin ZJ, Xiao L et al (2012) Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot 63:3279–3287. https://doi.org/10.1093/jxb/ers051
doi: 10.1093/jxb/ers051
pubmed: 22378946
pmcid: 3350935
Mai NTP, Mai CD, Van NH et al (2021) Discovery of new genetic determinants of morphological plasticity in rice roots and shoots under phosphate starvation using GWAS. J Plant Physiol 257:153340. https://doi.org/10.1016/j.jplph.2020.153340
doi: 10.1016/j.jplph.2020.153340
pubmed: 33388665
Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608
doi: 10.1016/S0022-2275(20)40190-7
pubmed: 14221106
Ogawa Y, Kuensting H, Nakao H, Sugiyama J (2002) Three-dimensional lipid distribution of a brown rice kernel. J Food Sci 67:2596–2599. https://doi.org/10.1111/J.1365-2621.2002.TB08783.X
doi: 10.1111/J.1365-2621.2002.TB08783.X
Phung NTP, Mai CD, Mournet P et al (2014) Characterization of a panel of Vietnamese rice varieties using DArT and SNP markers for association mapping purposes. BMC Plant Biol 14:1–16. https://doi.org/10.1186/s12870-014-0371-7
doi: 10.1186/s12870-014-0371-7
Ren J, Mozurkewich EL, Sen A et al (2013) Total serum fatty acid analysis by GC-MS: assay validation and serum sample stability. Curr Pharm Anal 9:331. https://doi.org/10.2174/1573412911309040002
doi: 10.2174/1573412911309040002
pubmed: 25110470
pmcid: 4123757
Saeed F, Chaudhry UK, Raza A et al. (2023) Developing future heat-resilient vegetable crops. Funct Integr Genom 23(1):47. https://doi.org/10.1007/s10142-023-00967-8
Shi J, Cao Y, Fan X et al (2012) A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Mol Breed 29:743–757. https://doi.org/10.1007/S11032-011-9587-5/TABLES/3
doi: 10.1007/S11032-011-9587-5/TABLES/3
Sun RH, Gao L, Mi Z et al (2020) CnMADS1, a MADS transcription factor, positively modulates cell proliferation and lipid metabolism in the endosperm of coconut (Cocos nucifera L.). Planta 252:1–3. https://doi.org/10.1007/S00425-020-03490-3
doi: 10.1007/S00425-020-03490-3
Tiwari GJ, Liu Q, Shreshtha P et al (2016) RNAi-mediated down-regulation of the expression of OsFAD2-1: effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC Plant Biol 16:1–3. https://doi.org/10.1186/s12870-016-0881-6
doi: 10.1186/s12870-016-0881-6
To HTM, Nguyen HT, Dang NTM et al (2019) Unraveling the genetic elements involved in shoot and root growth regulation by jasmonate in rice using a genome-wide association study. Rice 12:1–18. https://doi.org/10.1186/S12284-019-0327-5/TABLES/4
doi: 10.1186/S12284-019-0327-5/TABLES/4
To HTM, Le KQ, Van Nguyen H et al (2020) A genome-wide association study reveals the quantitative trait locus and candidate genes that regulate phosphate efficiency in a Vietnamese rice collection. Physiol Mol Biol Plants 26:2267–2281. https://doi.org/10.1007/s12298-020-00902-2
doi: 10.1007/s12298-020-00902-2
pubmed: 33268928
pmcid: 7688854
Xiong X, Wang C, Cabrera RM et al (2020) The role of glyceraldehyde-3-phosphate dehydrogenases in NADPH supply in the oleaginous filamentous fungus Mortierella alpina. https://doi.org/10.3389/fmicb.2020.00818
Ying JZ, Shan JX, Gao JP et al (2012) Identification of quantitative trait loci for lipid metabolism in rice seeds. Mol Plant 5:865–875. https://doi.org/10.1093/mp/ssr100
doi: 10.1093/mp/ssr100
pubmed: 22147755
Zhou H, Xia D, Li P et al (2021) Genetic architecture and key genes controlling the diversity of oil composition in rice grains. Mol Plant 14:456–469. https://doi.org/10.1016/J.MOLP.2020.12.001
doi: 10.1016/J.MOLP.2020.12.001
pubmed: 33307246
Zinati Z, Barati V (2018) Unveiling the molecular mechanisms of drought stress tolerance in rice (Oryza sativa L.) using computational approaches. Biotechnol J Biotechnol Comput Biol Bionanotechnol 99:385–400. https://doi.org/10.5114/BTA.2018.79969
doi: 10.5114/BTA.2018.79969
Zuk M, Prescha A, Kȩpczyński J, Szopa J (2003) ADP ribosylation factor regulates metabolism and antioxidant capacity of transgenic potato tubers. J Agric Food Chem 51:288–294. https://doi.org/10.1021/jf020779r
doi: 10.1021/jf020779r
pubmed: 12502423