Optimizing Fe Nutrition for Algal Growth.

Chlamydomonas reinhardtii Elemental profile Iron Photoheterotrophic growth

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 15 5 2023
pubmed: 11 5 2023
entrez: 11 5 2023
Statut: ppublish

Résumé

Chlamydomonas is an excellent reference system for dissecting the impact of iron (Fe) nutrition on photosynthetic and other metabolisms. The operational definition of four stages of Fe nutrition is described and a guide to the practical use of these stages is offered, specifically the preparation of media and growth of mixotrophic cultures. A key consideration is the impact of carbon metabolism on the expression of Fe-containing enzymes and hence the Fe quota. The absolute concentration of Fe in the medium is less determinative of gene expression than the Fe available on a per-cell basis. In nature, algal cells may transition from Fe-replete to -deficient to -limited during a bloom.

Identifiants

pubmed: 37166603
doi: 10.1007/978-1-0716-3183-6_16
doi:

Substances chimiques

Iron E1UOL152H7
Carbon 7440-44-0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

203-215

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Naumann B, Busch A, Allmer J et al (2007) Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 7(21):3964–3979
doi: 10.1002/pmic.200700407 pubmed: 17922516
Terauchi AM, Peers G, Kobayashi MC et al (2010) Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. Photosynth Res 105:39–49
doi: 10.1007/s11120-010-9562-8 pubmed: 20535560 pmcid: 2885298
Urzica EI, Casero D, Yamasaki H et al (2012) Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 24(10):3921–3948
doi: 10.1105/tpc.112.102491 pubmed: 23043051 pmcid: 3517228
Hui C, Schmollinger S, Strenkert D et al (2022) Simple steps to enable reproducibility: culture conditions affecting Chlamydomonas growth and elemental composition. Plant J 111(4):995–1014
doi: 10.1111/tpj.15867 pubmed: 35699388
Salomé PA, Merchant SS (2019) A series of fortunate events: introducing Chlamydomonas as a reference organism. Plant Cell 31(8):1682–1707
doi: 10.1105/tpc.18.00952 pubmed: 31189738 pmcid: 6713297
Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567
doi: 10.1021/cr900112r pubmed: 19754138 pmcid: 2764373
Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152
doi: 10.1146/annurev-arplant-042811-105522 pubmed: 22404471
Thomine S, Vert G (2013) Iron transport in plants: better be safe than sorry. Curr Opin Plant Biol 16(3):322–327
doi: 10.1016/j.pbi.2013.01.003 pubmed: 23415557
Weger HG, Espie GS (2000) Ferric reduction by iron-limited Chlamydomonas cells interacts with both photosynthesis and respiration. Planta 210:775–781
doi: 10.1007/s004250050679 pubmed: 10805449
Rubinelli P, Siripornadulsil S, Gao-Rubinelli F, Sayre RT (2002) Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation. Planta 215:1–13
doi: 10.1007/s00425-001-0711-3 pubmed: 12012236
Terzulli A, Kosman DJ (2010) Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane. Eukaryot Cell 9:815–826
doi: 10.1128/EC.00310-09 pubmed: 20348389 pmcid: 2863958
Dix DR, Bridgham JT, Broderius MA et al (1994) The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269:26092–26099
doi: 10.1016/S0021-9258(18)47163-3 pubmed: 7929320
Moseley JL, Allinger T, Herzog S et al (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 21:6709–6720
doi: 10.1093/emboj/cdf666 pubmed: 12485992 pmcid: 139087
Long JC, Merchant SS (2008) Photo-oxidative stress impacts the expression of genes encoding iron metabolism components in Chlamydomonas. Photochem Photobiol 84:1395–1403
doi: 10.1111/j.1751-1097.2008.00451.x pubmed: 19067961
Quinn JM, Merchant SS (1998) Copper-responsive gene expression during adaptation to copper deficiency. Methods Enzymol 297:263–279
doi: 10.1016/S0076-6879(98)97020-3 pubmed: 9750208
Kropat J, Hong-Hermesdorf A, Casero D et al (2011) A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J 66:770–780
doi: 10.1111/j.1365-313X.2011.04537.x pubmed: 21309872 pmcid: 3101321
Glaesener AG, Merchant SS, Blaby-Haas CE (2013) Iron economy in Chlamydomonas reinhardtii. Front Plant Sci 4:337
doi: 10.3389/fpls.2013.00337 pubmed: 24032036 pmcid: 3759009
Allen MD, del Campo JA, Kropat J, Merchant SS (2007) FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell 6:1841–1852
doi: 10.1128/EC.00205-07 pubmed: 17660359 pmcid: 2043389
Hong-Hermesdorf A, Miethke M, Gallaher SD et al (2014) Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 10(12):1034–1042
doi: 10.1038/nchembio.1662 pubmed: 25344811 pmcid: 4232477

Auteurs

Anne G Glaesener (AG)

California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.

Sabeeha S Merchant (SS)

California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA. sabeeha@berkeley.edu.
Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. sabeeha@berkeley.edu.
Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. sabeeha@berkeley.edu.
Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. sabeeha@berkeley.edu.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Charcoal Soil Microbiology Soil Biomass Carbon
Soil Pollutants Cadmium Arsenic Soil Microbiology Iron

Classifications MeSH