Optimizing Fe Nutrition for Algal Growth.
Chlamydomonas reinhardtii
Elemental profile
Iron
Photoheterotrophic growth
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
15
5
2023
pubmed:
11
5
2023
entrez:
11
5
2023
Statut:
ppublish
Résumé
Chlamydomonas is an excellent reference system for dissecting the impact of iron (Fe) nutrition on photosynthetic and other metabolisms. The operational definition of four stages of Fe nutrition is described and a guide to the practical use of these stages is offered, specifically the preparation of media and growth of mixotrophic cultures. A key consideration is the impact of carbon metabolism on the expression of Fe-containing enzymes and hence the Fe quota. The absolute concentration of Fe in the medium is less determinative of gene expression than the Fe available on a per-cell basis. In nature, algal cells may transition from Fe-replete to -deficient to -limited during a bloom.
Identifiants
pubmed: 37166603
doi: 10.1007/978-1-0716-3183-6_16
doi:
Substances chimiques
Iron
E1UOL152H7
Carbon
7440-44-0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
203-215Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Naumann B, Busch A, Allmer J et al (2007) Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 7(21):3964–3979
doi: 10.1002/pmic.200700407
pubmed: 17922516
Terauchi AM, Peers G, Kobayashi MC et al (2010) Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. Photosynth Res 105:39–49
doi: 10.1007/s11120-010-9562-8
pubmed: 20535560
pmcid: 2885298
Urzica EI, Casero D, Yamasaki H et al (2012) Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 24(10):3921–3948
doi: 10.1105/tpc.112.102491
pubmed: 23043051
pmcid: 3517228
Hui C, Schmollinger S, Strenkert D et al (2022) Simple steps to enable reproducibility: culture conditions affecting Chlamydomonas growth and elemental composition. Plant J 111(4):995–1014
doi: 10.1111/tpj.15867
pubmed: 35699388
Salomé PA, Merchant SS (2019) A series of fortunate events: introducing Chlamydomonas as a reference organism. Plant Cell 31(8):1682–1707
doi: 10.1105/tpc.18.00952
pubmed: 31189738
pmcid: 6713297
Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567
doi: 10.1021/cr900112r
pubmed: 19754138
pmcid: 2764373
Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152
doi: 10.1146/annurev-arplant-042811-105522
pubmed: 22404471
Thomine S, Vert G (2013) Iron transport in plants: better be safe than sorry. Curr Opin Plant Biol 16(3):322–327
doi: 10.1016/j.pbi.2013.01.003
pubmed: 23415557
Weger HG, Espie GS (2000) Ferric reduction by iron-limited Chlamydomonas cells interacts with both photosynthesis and respiration. Planta 210:775–781
doi: 10.1007/s004250050679
pubmed: 10805449
Rubinelli P, Siripornadulsil S, Gao-Rubinelli F, Sayre RT (2002) Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation. Planta 215:1–13
doi: 10.1007/s00425-001-0711-3
pubmed: 12012236
Terzulli A, Kosman DJ (2010) Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane. Eukaryot Cell 9:815–826
doi: 10.1128/EC.00310-09
pubmed: 20348389
pmcid: 2863958
Dix DR, Bridgham JT, Broderius MA et al (1994) The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269:26092–26099
doi: 10.1016/S0021-9258(18)47163-3
pubmed: 7929320
Moseley JL, Allinger T, Herzog S et al (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 21:6709–6720
doi: 10.1093/emboj/cdf666
pubmed: 12485992
pmcid: 139087
Long JC, Merchant SS (2008) Photo-oxidative stress impacts the expression of genes encoding iron metabolism components in Chlamydomonas. Photochem Photobiol 84:1395–1403
doi: 10.1111/j.1751-1097.2008.00451.x
pubmed: 19067961
Quinn JM, Merchant SS (1998) Copper-responsive gene expression during adaptation to copper deficiency. Methods Enzymol 297:263–279
doi: 10.1016/S0076-6879(98)97020-3
pubmed: 9750208
Kropat J, Hong-Hermesdorf A, Casero D et al (2011) A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J 66:770–780
doi: 10.1111/j.1365-313X.2011.04537.x
pubmed: 21309872
pmcid: 3101321
Glaesener AG, Merchant SS, Blaby-Haas CE (2013) Iron economy in Chlamydomonas reinhardtii. Front Plant Sci 4:337
doi: 10.3389/fpls.2013.00337
pubmed: 24032036
pmcid: 3759009
Allen MD, del Campo JA, Kropat J, Merchant SS (2007) FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell 6:1841–1852
doi: 10.1128/EC.00205-07
pubmed: 17660359
pmcid: 2043389
Hong-Hermesdorf A, Miethke M, Gallaher SD et al (2014) Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 10(12):1034–1042
doi: 10.1038/nchembio.1662
pubmed: 25344811
pmcid: 4232477