Direct Arylation of Silicon Nanocrystals with Hexadehydro-Diels-Alder-Derived Benzynes.
Arylation
Benzyne
Hexadehydro-Diels-Alder Reaction
Silicon Nanocrystals
Surface Chemistry
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
26 Jun 2023
26 Jun 2023
Historique:
received:
21
03
2023
medline:
15
5
2023
pubmed:
15
5
2023
entrez:
15
5
2023
Statut:
ppublish
Résumé
Colloidal silicon nanocrystals (SiNCs) have garnered significant interest in optoelectronics and biomedical applications. Direct arylation provides pathways to enhance the solution processability of particles and manipulate the photophysical and electronic properties of SiNCs. Unfortunately, existing methods employed to prepare aryl-functionalized SiNCs are based on organometallic coupling or transition-metal-catalyzed strategies, which require metal-based reagents for preactivation or the precursors and complicated post-treatment processes for product purification. Herein, we demonstrate a metal-free method that directly functionalizes SiNCs with aryl-based ligands. We design a series of benzyne derivatives formed from the thermal cyclization of predesigned alkynes, allowing efficient arylation on hydride-terminated silicon surfaces under mild conditions. These aryl-functionalized SiNCs exhibit strong blue emissions with nanosecond-scaled decay, suggesting the formation of a new radiative recombination channel on SiNC surfaces.
Identifiants
pubmed: 37186058
doi: 10.1002/anie.202304056
doi:
Substances chimiques
benzyne
0
Silicon
Z4152N8IUI
Benzene Derivatives
0
Alkynes
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202304056Subventions
Organisme : National Natural Science Foundation of China
ID : 22175201
Organisme : National Natural Science Foundation of China
ID : 22071269
Organisme : Natural Science Foundation of Guangdong Province
ID : 2019A1515011748
Organisme : Science and Technology Planning Project of Guangdong Province
ID : 2019A050510018
Organisme : Pearl River Recruitment Program of Talent
ID : 2019QN01L149
Organisme : Pearl River Recruitment Program of Talent
ID : 2019QN01C108
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
F. Erogbogbo, K.-T. Yong, I. Roy, R. Hu, W.-C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, ACS Nano 2011, 5, 413-423.
C. M. Hessel, D. Reid, M. G. Panthani, M. R. Rasch, B. W. Goodfellow, J. Wei, H. Fujii, V. Akhavan, B. A. Korgel, Chem. Mater. 2012, 24, 393-401.
M. Dasog, G. B. De los Reyes, L. V. Titova, F. A. Hegmann, J. G. C. Veinot, ACS Nano 2014, 8, 9636-9648.
B. F. P. McVey, R. D. Tilley, Acc. Chem. Res. 2014, 47, 3045-3051.
F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, U. Lemmer, Nano Lett. 2013, 13, 475-480.
F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, Nat. Nanotechnol. 2014, 9, 19-32.
M. Dasog, J. Kehrle, B. Rieger, J. G. C. Veinot, Angew. Chem. Int. Ed. 2016, 55, 2322-2339.
C. M. Gonzalez, J. G. C. Veinot, J. Mater. Chem. C 2016, 4, 4836-4846.
J. G. C. Veinot, Chem. Commun. 2006, 4160-4168.
Q. Li, Y. He, J. Chang, L. Wang, H. Chen, Y.-W. Tan, H. Wang, Z. Shao, J. Am. Chem. Soc. 2013, 135, 14924-14927.
L. Wang, Q. Li, H.-Y. Wang, J.-C. Huang, R. Zhang, Q.-D. Chen, H.-L. Xu, W. Han, Z.-Z. Shao, H.-B. Sun, Light: Sci. Appl. 2015, 4, e245.
J. Liang, C. Huang, X. Gong, ACS Sustainable Chem. Eng. 2019, 7, 18213-18227.
T. Zhou, R. T. Anderson, H. Li, J. Bell, Y. Yang, B. P. Gorman, S. Pylypenko, M. T. Lusk, A. Sellinger, Nano Lett. 2015, 15, 3657-3663.
Y.-H. Li, J. M. Buriak, Inorg. Chem. 2006, 45, 1096-1102.
Z. Yang, M. H. Wahl, J. G. C. Veinot, Can. J. Chem. 2014, 92, 951-957.
C. Henry de Villeneuve, J. Pinson, M. C. Bernard, P. Allongue, J. Phys. Chem. B 1997, 101, 2415-2420.
M. P. Stewart, F. Maya, D. V. Kosynkin, S. M. Dirk, J. J. Stapleton, C. L. McGuiness, D. L. Allara, J. M. Tour, J. Am. Chem. Soc. 2004, 126, 370-378.
I. M. D. Höhlein, J. Kehrle, T. Helbich, Z. Yang, J. G. C. Veinot, B. Rieger, Chem. Eur. J. 2014, 20, 4212-4216.
J. F. Bunnett, J. Chem. Educ. 1961, 38, 278-285.
H. Pellissier, M. Santelli, Tetrahedron 2003, 59, 701-730.
C. Wentrup, Aust. J. Chem. 2010, 63, 979-986.
P. M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550-3577.
G. Wittig, G. Pieper, G. Fuhrmann, Ber. Dtsch. Chem. Ges. 1940, 73, 1193-1197.
J. D. Roberts, H. E. Simmons Jr., L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290-3291.
I. V. Magedov, L. V. Frolova, M. Ovezmyradov, D. Bethke, E. A. Shaner, N. G. Kalugin, Carbon 2013, 54, 192-200.
T. R. Hoye, B. Baire, D. Niu, P. H. Willoughby, B. P. Woods, Nature 2012, 490, 208-212.
L. L. Fluegel, T. R. Hoye, Chem. Rev. 2021, 121, 2413-2444.
Z. Yang, M. Iqbal, A. R. Dobbie, J. G. C. Veinot, J. Am. Chem. Soc. 2013, 135, 17595-17601.
Z. Yang, M. Dasog, A. R. Dobbie, R. Lockwood, Y. Zhi, A. Meldrum, J. G. C. Veinot, Adv. Funct. Mater. 2014, 24, 1345-1353.
Z. Yang, C. M. Gonzalez, T. K. Purkait, M. Iqbal, A. Meldrum, J. G. C. Veinot, Langmuir 2015, 31, 10540-10548.
H. Shen, X. Xiao, M. K. Haj, P. H. Willoughby, T. R. Hoye, J. Am. Chem. Soc. 2018, 140, 15616-15620.
T. R. Hoye, B. Baire, T. Wang, Chem. Sci. 2014, 5, 545-550.
J. M. Buriak, Chem. Rev. 2002, 102, 1271-1308.
A. Angı, R. Sinelnikov, A. Meldrum, J. G. C. Veinot, I. Balberg, D. Azulay, O. Millo, B. Rieger, Nanoscale 2016, 8, 7849-7853.
J. Harper, M. J. Sailor, Langmuir 1997, 13, 4652-4658.
J. A. Kelly, J. G. C. Veinot, ACS Nano 2010, 4, 4645-4656.
Z. Yang, G. B. De los Reyes, L. V. Titova, I. Sychugov, M. Dasog, J. Linnros, F. A. Hegmann, J. G. C. Veinot, ACS Photonics 2015, 2, 595-605.
A. Brewer, K. von Haeften, Appl. Phys. Lett. 2009, 94, 261102.
M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, J. G. C. Veinot, ACS Nano 2013, 7, 2676-2685.