Screening, characterization, and determination of suspected additives bimatoprost and latanoprost in cosmetics using NMR and LC-MS methods.


Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 04 03 2023
accepted: 10 05 2023
revised: 07 05 2023
medline: 26 6 2023
pubmed: 23 5 2023
entrez: 23 5 2023
Statut: ppublish

Résumé

Recently, many new types of cosmetic illegal additives have been screened in the market. Most of the new additives were new drugs or analogues with very similar structures to other prohibited additives, which were difficult to be identified by liquid chromatography-mass spectrometry (LC-MS) only. Therefore, a new strategy is proposed, which is chromatographic separation combined with nuclear magnetic resonance spectroscopy (NMR) structural identification. The suspected samples were screened by ultra-high-performance liquid chromatography tandem high-resolution mass spectrometry (UPLC-Q-TOF-MS), followed by purification and extraction through silica-gel column chromatography and preparative high-performance liquid chromatography (HPLC). Finally, the extracts were identified unambiguously by NMR as bimatoprost and latanoprost, which were identified to be new cosmetic illegal additives in eyelash serums in China. Meanwhile, bimatoprost and latanoprost were quantified by high-performance liquid chromatography tandem triple quadrupole mass spectrum (HPLC-QQQ-MS/MS). The quantitative method demonstrated good linearity in the range of approximately 0.25-50 ng/mL (R

Identifiants

pubmed: 37219580
doi: 10.1007/s00216-023-04744-1
pii: 10.1007/s00216-023-04744-1
doi:

Substances chimiques

Latanoprost 6Z5B6HVF6O
Bimatoprost QXS94885MZ
Cosmetics 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3549-3558

Informations de copyright

© 2023. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Woo IS, Kim JH, Kim YK, Kim HI, Shin DW, Kim JH, Beak SY. Development and validation of a simultaneous analytical method for non-steroidal therapeutic compounds in cosmetics using liquid chromatography-tandem mass spectrometry. J Sep Sci. 2021;44(12):2371–81.
Zhan J, Ni ML, Zhao HY, Ge XM, He XY, Yin JY, Yu XJ, Fan YM, Huang ZQ. Multiresidue analysis of 59 nonallowed substances and other contaminants in cosmetics. J Sep Sci. 2014;37(24):3684–90.
Desmedt B, Courselle P, De Beer JO, Rogiers V, Grosber M, Deconinck E, De Paepe K. Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J Eur Acad Dermatol Venereol. 2016;30(6):943–50.
Gimeno P, Maggio AF, Bancilhon M, Lassu N, Gornes H, Brenier C, Lempereur L. HPLC-UV Method for the identification and screening of hydroquinone, ethers of hydroquinone and corticosteroids possibly used as skin-whitening agents in illicit cosmetic products. J Chromatogr Sci. 2016;54(3):343–52.
Desmedt B, Rogiers V, Courselle P, De Beer JO, De Paepe K, Deconinck E. Development and validation of a fast chromatographic method for screening and quantification of legal and illegal skin whitening agents. J Pharm Biomed Anal. 2013;83:82–8.
doi: 10.1016/j.jpba.2013.04.020 pubmed: 23708434
Kim NS, Yoo GJ, Lee JH, Park H-J, Cho S, Shin DW, Kim Y, Baek SY. Determination of 43 prohibited glucocorticoids in cosmetic products using a simultaneous LC-MS/MS method. Anal Methods. 2017;9(13):2104–15.
doi: 10.1039/C6AY03065C
Jian L, Yuan X, Han J, Zheng R, Peng X, Wang K. Screening for illegal addition of glucocorticoids in adulterated cosmetic products using ultra-performance liquid chromatography/tandem mass spectrometry with precursor ion scanning. Rapid Commun Mass Spectrom. 2021;35(3):e8999.
doi: 10.1002/rcm.8999 pubmed: 33140453
Yuniati W, Amelia T, Ibrahim S, Damayanti S. Analytical method development for determining formaldehyde in cream cosmetics using hyphenated gas chromatography. ACS Omega. 2021;6(42):28403–9.
doi: 10.1021/acsomega.1c04792 pubmed: 34723037 pmcid: 8552461
Zhou W. The determination of 1,4-dioxane in cosmetic products by gas chromatography with tandem mass spectrometry. J Chromatogr A. 2019;1607:460400.
doi: 10.1016/j.chroma.2019.460400 pubmed: 31405575
Arshad H, Mehmood MZ, Shah MH, Abbasi AM. Evaluation of heavy metals in cosmetic products and their health risk assessment. Saudi Pharm J. 2020;28(7):779–90.
doi: 10.1016/j.jsps.2020.05.006 pubmed: 32647479 pmcid: 7335825
Maneli MH, Wiesner L, Tinguely C, Davids LM, Spengane Z, Smith P, van Wyk JC, Jardine A, Khumalo NP. Combinations of potent topical steroids, mercury and hydroquinone are common in internationally manufactured skin-lightening products: a spectroscopic study. Clin Exp Dermatol. 2016;41(2):196–201.
doi: 10.1111/ced.12720 pubmed: 26211494
Guo P, Xu X, Xian L, Ge Y, Luo Z, Du W, Jing W, Zeng A, Chang C, Fu Q. Development of molecularly imprinted column-on line-two dimensional liquid chromatography for rapidly and selectively monitoring estradiol in cosmetics. Talanta. 2016;161:830–7.
doi: 10.1016/j.talanta.2016.09.041 pubmed: 27769490
Wang M, Guo L, Yu M, Zhao H. The application of a lateral flow immunographic assay to rapidly test for dexamethasone in commercial facial masks. Anal Bioanal Chem. 2019;411(22):5703–10.
doi: 10.1007/s00216-019-01948-2 pubmed: 31342091 pmcid: 6704111
Maggio RM, Calvo NL, Vignaduzzo SE, Kaufman TS. Pharmaceutical impurities and degradation products: uses and applications of NMR techniques. J Pharm Biomed Anal. 2014;101:102–22.
doi: 10.1016/j.jpba.2014.04.016 pubmed: 24853620
Kontogianni VG, Exarchou V, Troganis A, Gerothanassis IP. Rapid and novel discrimination and quantification of oleanolic and ursolic acids in complex plant extracts using two-dimensional nuclear magnetic resonance spectroscopy-comparison with HPLC methods. Anal Chim Acta. 2009;635(2):188–95.
doi: 10.1016/j.aca.2009.01.021 pubmed: 19216877
Lin Y, Zeng Q, Lin L, Chen Z. High resolution nuclear magnetic resonance spectroscopy on biological tissue and metabolomics. Curr Med Chem. 2019;26(12):2190–207.
doi: 10.2174/0929867326666190312130155 pubmed: 30864500
Yang Z. Online hyphenated liquid chromatography-nuclear magnetic resonance spectroscopy-mass spectrometry for drug metabolite and nature product analysis. J Pharm Biomed Anal. 2006;40(3):516–27.
doi: 10.1016/j.jpba.2005.10.002 pubmed: 16280226
Tolkatchev D. Nuclear magnetic resonance spectroscopy in analysis of granulin three-dimensional structure and cysteine bridging. Methods Mol Biol. 2018;1806:65–80.
doi: 10.1007/978-1-4939-8559-3_5 pubmed: 29956269
Christophoridou S, Dais P, Tseng LH, Spraul M. Separation and identification of phenolic compounds in olive oil by coupling high-performance liquid chromatography with postcolumn solid-phase extraction to nuclear magnetic resonance spectroscopy (LC-SPE-NMR). J Agric Food Chem. 2005;53(12):4667–79.
doi: 10.1021/jf040466r pubmed: 15941298
Bingol K, Bruschweiler R. Multidimensional approaches to NMR-based metabolomics. Anal Chem. 2014;86(1):47–57.
doi: 10.1021/ac403520j pubmed: 24195689
Markley JL, Bruschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS. The future of NMR-based metabolomics. Curr Opin Biotechnol. 2017;43:34–40.
doi: 10.1016/j.copbio.2016.08.001 pubmed: 27580257
Li S, Tian Y, Jiang P, Lin Y, Liu X, Yang H. Recent advances in the application of metabolomics for food safety control and food quality analyses. Crit Rev Food Sci Nutr. 2021;61(9):1448–69.
doi: 10.1080/10408398.2020.1761287 pubmed: 32441547
Fan TW, Lorkiewicz PK, Sellers K, Moseley HN, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther. 2012;133(3):366–91.
doi: 10.1016/j.pharmthera.2011.12.007 pubmed: 22212615
Fan TW, Lane AN. Applications of NMR spectroscopy to systems biochemistry. Prog Nucl Magn Reson Spectrosc. 2016;92–93:18–53.
doi: 10.1016/j.pnmrs.2016.01.005 pubmed: 26952191 pmcid: 4850081
Wang Y, Gao X, Yang H. Integrated metabolomics of “big six” Escherichia coli on pea sprouts to organic acid treatments. Food Res Int. 2022;157:111354.
doi: 10.1016/j.foodres.2022.111354 pubmed: 35761617
Chen L, Zhao X, Li R, Yang H. Integrated metabolomics and transcriptomics reveal the adaptive responses of Salmonella enterica serovar Typhimurium to thyme and cinnamon oils. Food Res Int. 2022;157:111241.
doi: 10.1016/j.foodres.2022.111241 pubmed: 35761553
Katsanos A, Riva I, Bozkurt B, Hollo G, Quaranta L, Oddone F, Irkec M, Dutton GN, Konstas AG. A new look at the safety and tolerability of prostaglandin analogue eyedrops in glaucoma and ocular hypertension. Expert Opin Drug Saf. 2022;21(4):525–39.
doi: 10.1080/14740338.2022.1996560 pubmed: 34666576
Kadri R, Shetty A, Parameshwar D, Kudva AA, Achar A, Shetty J. Effect of prostaglandin analogues on central corneal thickness in patients with glaucoma: a systematic review and meta-analysis with trial sequential analysis. Indian J Ophthalmol. 2022;70(5):1502–12.
doi: 10.4103/ijo.IJO_1971_21 pubmed: 35502015 pmcid: 9332944
Barron-Hernandez YL, Tosti A. Bimatoprost for the treatment of eyelash, eyebrow and scalp alopecia. Expert Opin Investig Drugs. 2017;26(4):515–22.
doi: 10.1080/13543784.2017.1303480 pubmed: 28264599
Steinsapir KD, Steinsapir SMG. Revisiting the safety of prostaglandin analog eyelash growth products. Dermatol Surg. 2021;47(5):658–65.
doi: 10.1097/DSS.0000000000002928 pubmed: 33625141
Zanoni G, D’Alfonso A, Porta A, Feliciani L, Nolan SP, Vidari G. The Meyer-Schuster rearrangement: a new synthetic strategy leading to prostaglandins and their drug analogs, bimatoprost and latanoprost. Tetrahedron. 2010;66(38):7472–8.
doi: 10.1016/j.tet.2010.07.069
Martynow JG, Jóźwik J, Szelejewski W, Achmatowicz O, Kutner A, Wiśniewski K, Winiarski J, Zegrocka-Stendel O, Golebiewski P. A new synthetic approach to high-purity (15R)-latanoprost. Eur J Org Chem. 2007;2007(4):689–703.
doi: 10.1002/ejoc.200600749
Koda N, Tsutsui Y, Niwa H, Ito S, Woodward DF, Watanabe K. Synthesis of prostaglandin F ethanolamide by prostaglandin F synthase and identification of bimatoprost as a potent inhibitor of the enzyme: new enzyme assay method using LC/ESI/MS. Arch Biochem Biophys. 2004;424(2):128–36.
doi: 10.1016/j.abb.2004.02.009 pubmed: 15047184
Huang XL, Xing SX, Sun L. Discussion on safety risk of bimatoprost for eyelash growth. Chin J Mod Appl Pharm. 2022;39(9):1253–60.
Alm A, Grierson I, Shields MB. Side effects associated with prostaglandin analog therapy. Surv Ophthalmol. 2008;53(Suppl 1):S93-105.
doi: 10.1016/j.survophthal.2008.08.004 pubmed: 19038628
Wang HY, Sun L, Wang K, Zheng R, Pan C, Xu Y, Lu Y. Determination of five components including bimatoprost in cosmetics. China’s National Medical Products Administration. 2021.  https://www.nmpa.gov.cn/xxgk/ggtg/qtggtg/jmhzhptg/20210913172011142.html . Accessed 13 Sep 2021.
Ran X, Yang Z, Chen Y, Yang H. Konjac glucomannan decreases metabolite release of a plant-based fishball analogue during in vitro digestion by affecting amino acid and carbohydrate metabolic pathways. Food Hydrocoll. 2022;129:107623.
doi: 10.1016/j.foodhyd.2022.107623
Zhao L, Poh CN, Wu J, Zhao X, He Y, Yang H. Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. Innov Food Sci Emerg. 2022;76:102917.
doi: 10.1016/j.ifset.2022.102917
Mao X, Xiao W, Wan Y, Li Z, Luo D, Yang H. Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables. Food Chem. 2021;345:128807.
doi: 10.1016/j.foodchem.2020.128807 pubmed: 33310261
Chevolleau S, Bouville A, Debrauwer L. Development and validation of a modified QuEChERS protocol coupled to UHPLC-APCI-MS/MS for the simple and rapid quantification of 16 heterocyclic aromatic amines in cooked beef. Food Chem. 2020;316:126327.
doi: 10.1016/j.foodchem.2020.126327 pubmed: 32045815
Benincasa C, Perri E, Iannotta N, Scalercio S. LC/ESI–MS/MS method for the identification and quantification of spinosad residues in olive oils. Food Chem. 2011;125(3):1116–20.
doi: 10.1016/j.foodchem.2010.09.111
Kruve A, Kunnapas A, Herodes K, Leito I. Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry. J Chromatogr A. 2008;1187(1–2):58–66.
doi: 10.1016/j.chroma.2008.01.077 pubmed: 18304557

Auteurs

Yong Lu (Y)

National Institutes for Food and Drug Control, Beijing, 100050, China.

Yu He (Y)

National Institutes for Food and Drug Control, Beijing, 100050, China.

Xinran Wang (X)

National Institutes for Food and Drug Control, Beijing, 100050, China.

Haiyan Wang (H)

National Institutes for Food and Drug Control, Beijing, 100050, China.

Qianqian Qiu (Q)

National Institutes for Food and Drug Control, Beijing, 100050, China.

Baojin Wu (B)

National Institutes for Food and Drug Control, Beijing, 100050, China.

Xianfu Wu (X)

National Institutes for Food and Drug Control, Beijing, 100050, China. wuxf99@163.com.

Articles similaires

Humans Middle Aged Female Male Surveys and Questionnaires
Adolescent Child Female Humans Male
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

Classifications MeSH