Arabidopsis calmodulin-like proteins CML13 and CML14 interact with proteins that have IQ domains.
CAMTAs
IQD proteins'
biochemistry
calcium signalling
myosins
Journal
Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
15
09
2022
accepted:
09
05
2023
medline:
5
7
2023
pubmed:
24
5
2023
entrez:
24
5
2023
Statut:
ppublish
Résumé
In response to Ca
Substances chimiques
Calmodulin
0
Arabidopsis Proteins
0
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2470-2491Informations de copyright
© 2023 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Références
Abel, S., Savchenko, T. & Levy, M. (2005) Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evolutionary Biology, 5, 72.
Abu-Abied, M., Golomb, L., Belausov, E., Huang, S., Geiger, B., Kam, Z. et al. (2006) Identification of plant cytoskeleton-interacting proteins by screening for actin stress fiber association in mammalian fibroblasts. The Plant Journal, 48, 367-379.
Aldon, D., Mbengue, M., Mazars, C. & Galaud, J.-P. (2018) Calcium signalling in plant biotic interactions. International Journal of Molecular Sciences, 19, 1-19.
Alexander, K.A., Wakim, B.T., Doyle, G.S., Walsh, K.A. & Storm, D.R. (1988) Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein. Journal of Biological Chemistry, 263, 7544-7549.
André, I. & Linse, S. (2002) Measurement of Ca2+-binding constants of proteins and presentation of the CaLigator software. Analytical Biochemistry, 305, 195-205.
Andrews, C., Xu, Y., Kirberger, M. & Yang, J.J. (2020) Structural aspects and prediction of calmodulin-binding proteins. International Journal of Molecular Sciences, 22, 308.
Atcheson, E., Hamilton, E., Pathmanathan, S., Greer, B., Harriott, P. & Timson, D.J. (2011) IQ-motif selectivity in human IQGAP2 and IQGAP3: binding of calmodulin and myosin essential light chain. Bioscience Reports, 31, 371-379.
Baerenfaller, K., Hirsch-Hoffmann, M., Svozil, J., Hull, R., Russenberger, D., Bischof, S. et al. (2011) pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Integrative Biology, 3, 225-237.
Bähler, M. & Rhoads, A. (2002) Calmodulin signaling via the IQ motif. FEBS Letters, 513, 107-113.
Banjoko, A. & Trelease, R.N. (1995) Development and application of an in vivo plant peroxisome import system. Plant Physiology, 107, 1201-1208.
Bashandy, H., Jalkanen, S. & Teeri, T.H. (2015) Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods, 11, 47.
Bender, K.W., Dobney, S., Ogunrinde, A., Chiasson, D., Mullen, R.T., Teresinski, H.J. et al. (2014) The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca2 sensor in Arabidopsis. Biochemical Journal, 457, 127-136.
Bender, K.W., Rosenbaum, D.M., Vanderbeld, B., Ubaid, M. & Snedden, W.A. (2013) The Arabidopsis calmodulin-like protein, CML39, functions during early seedling establishment. The Plant Journal, 76, 634-647.
Bender, K.W. & Snedden, W.A. (2013) Calmodulin-related proteins step out from the shadow of their namesake. Plant Physiology, 163, 486-495.
Black, D.J., Tran, Q.-K. & Persechini, A. (2004) Monitoring the total available calmodulin concentration in intact cells over the physiological range in free Ca2+. Cell Calcium, 35, 415-425.
Bouché, N., Scharlat, A., Snedden, W., Bouchez, D. & Fromm, H. (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. Journal of Biological Chemistry, 277, 21851-21861.
Boyne, J.R., Yosuf, H.M., Bieganowski, P., Brenner, C. & Price, C. (2000) Yeast myosin light chain, Mlc1p, interacts with both IQGAP and class II myosin to effect cytokinesis. Journal of Cell Science, 113, 4533-4543.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Brandizzi, F., Irons, S., Kearns, A. & Hawes, C. (2003) BY-2 cells: culture and transformation for live cell imaging. Current Protocols in Cell Biology, 19, 1.7.1-1.7.16. https://doi.org/10.1002/0471143030.cb0107s19
Brautigam, C.A., Zhao, H., Vargas, C., Keller, S. & Schuck, P. (2016) Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nature Protocols, 11, 882-894.
Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D. et al. (2017) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiology, 173, 1692-1708.
Bürstenbinder, K., Savchenko, T., Müller, J., Adamson, A.W., Stamm, G., Kwong, R. et al. (2013) Arabidopsis calmodulin-binding protein IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-related protein-1. Journal of Biological Chemistry, 288, 1871-1882.
Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R. et al. (2008) Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology, 146, 323-324.
Copley, R.R., Schultz, J., Ponting, C.P. & Bork, P. (1999) Protein families in multicellular organisms. Current Opinion in Structural Biology, 9, 408-415.
Costa, A., Navazio, L. & Szabo, I. (2018) The contribution of organelles to plant intracellular calcium signalling. Journal of Experimental Botany, 69, 4175-4193.
Crawley, S.W., Liburd, J., Shaw, K., Jung, Y., Smith, S.P. & Côté, G.P. (2011) Identification of calmodulin and MlcC as light chains for dictyostelium myosin-I isozymes. Biochemistry, 50, 6579-6588.
Crawley, S.W., de la Roche, M.A., Lee, S.F., Li, Z., Chitayat, S. & Smith, S.P. et al. (2006) Identification and characterization of an 8-kDa light chain associated with dictyostelium discoideum MyoB, a class I myosin. Journal of Biological Chemistry, 281, 6307-6315.
DeFalco, T.A., Bender, K.W. & Snedden, W.A. (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochemical Journal, 425, 27-40.
DeFalco, T.A., Chiasson, D., Munro, K., Kaiser, B.N. & Snedden, W.A. (2010) Characterization of GmCaMK1, a member of a soybean calmodulin-binding receptor-like kinase family. FEBS Letters, 584, 4717-4724.
DeFalco, T.A., Marshall, C.B., Munro, K., Kang, H.-G., Moeder, W., Ikura, M. et al. (2016) Multiple calmodulin-binding sites positively and negatively regulate arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. The Plant Cell, 28, tpc.00870.2015.
De La Roche, M.A., Lee, S.-F. & Côté, G.P. (2003) The dictyostelium class I myosin, MyoD, contains a novel light chain that lacks high-affinity calcium-binding sites. Biochemical Journal, 374, 697-705.
Dhanoa, P.K., Richardson, L.G.L., Smith, M.D., Gidda, S.K., Henderson, M.P.A., Andrews, D.W. et al. (2010) Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope. PLoS One, 5, e10098.
Dobney, S., Chiasson, D., Lam, P., Smith, S.P. & Snedden, W.A. (2009) The calmodulin-related calcium sensor CML42 plays a role in trichome branching. Journal of Biological Chemistry, 284, 31647-31657.
Dodd, A.N., Kudla, J. & Sanders, D. (2010) The language of calcium signaling. Annual Review of Plant Biology, 61, 593-620.
Dreze, M., Carvunis, A.R., Charloteaux, B., Galli, M., Pevzner, S.J., Tasan, M. et al. (2011) Evidence for network evolution in an Arabidopsis interactome map. Science, 333, 601-607.
Dunlap, T.B., Kirk, J.M., Pena, E.A., Yoder, M.S. & Creamer, T.P. (2013) Thermodynamics of binding by calmodulin correlates with target peptide α-helical propensity. Proteins: Structure, Function, and Bioinformatics, 81, 607-612.
Fischer, C., Kugler, A., Hoth, S. & Dietrich, P. (2013) An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant and Cell Physiology, 54, 573-584.
Fromm, H., & Chua, N. H. (1992) Cloning of plant cDNAs encoding calmodulin-binding proteins using 35S-labeled recombinant calmodulin as a probe. Plant Molecular Biology Reporter, 10, 199-206.
Gifford, J.L., Walsh, M.P. & Vogel, H.J. (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical Journal, 405, 199-221.
Golomb, L., Abu-Abied, M., Belausov, E. & Sadot, E. (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biology, 8, 3.
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Haraguchi, T., Ito, K., Duan, Z., Haraguchi, T., Ito, K., Duan, Z. et al. (2018) Functional diversity of class XI myosins in Arabidopsis thaliana. Plant and Cell Physiology, 59, 2268-2277.
Haraguchi, T., Tominaga, M., Matsumoto, R., Sato, K., Nakano, A., Yamamoto, K. et al. (2014) Molecular characterization and subcellular localization of Arabidopsis class VIII myosin, ATM1. Journal of Biological Chemistry, 289, 12343-12355.
Heissler, S.M. & Sellers, J.R. (2014) Myosin light chains: teaching old dogs new tricks. BioArchitecture, 4, 169-188.
Homma, K., Saito, J., Ikebe, R. & Ikebe, M. (2000) Ca2+-dependent regulation of the motor activity of myosin V. Journal of Biological Chemistry, 275, 34766-34771.
Houdusse, A., Gaucher, J.-F., Krementsova, E., Mui, S., Trybus, K.M. & Cohen, C. (2006) Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proceedings of the National Academy of Sciences, 103, 19326-19331.
Ikura, M. & Ames, J.B. (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proceedings of the National Academy of Sciences, 103, 1159-1164.
Iqbal, Z., Shariq Iqbal, M., Singh, S.P. & Buaboocha, T. (2020) Ca2+/calmodulin complex triggers CAMTA transcriptional machinery under stress in plants: signaling cascade and molecular regulation. Frontiers in Plant Science, 11, 598327.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.
Jurado, L.A., Chockalingam, P.S. & Jarrett, H.W. (1999) Apocalmodulin. Physiological Reviews, 79, 661-682.
Kawasaki, H. & Kretsinger, R.H. (2017) Structural and functional diversity of EF-hand proteins: evolutionary perspectives. Protein Science, 26, 1898-1920.
Kelly, S.M., Jess, T.J. & Price, N.C. (2005) How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1751, 119-139.
Kidokoro, S., Yoneda, K., Takasaki, H., Takahashi, F., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2017) Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. The Plant Cell, 29, 760-774.
Kim, Y.S., An, C., Park, S., Gilmour, S.J., Wang, L., Renna, L. et al. (2017) CAMTA-mediated regulation of salicylic acid immunity pathway genes in arabidopsis exposed to low temperature and pathogen infection. The Plant Cell, 29, 2465-2477.
Kölling, M., Kumari, P. & Bürstenbinder, K. (2019) Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. Journal of Experimental Botany, 70, 387-396.
Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U. et al. (2018) Advances and current challenges in calcium signaling. New Phytologist, 218, 414-431.
Kumari, P., Dahiya, P., Livanos, P., Zergiebel, L., Kölling, M., Poeschl, Y. et al. (2021) IQ67 DOMAIN proteins facilitate preprophase band formation and division-plane orientation. Nature Plants, 7, 739-747.
Langelaan, D.N., Liburd, J., Yang, Y., Miller, E., Chitayat, S., Crawley, S.W. et al. (2016) Structure of the single-lobe myosin light chain C in complex with the light chain-binding domains of myosin-1C provides insights into divergent IQ motif recognition. Journal of Biological Chemistry, 291, 19607-19617.
La Verde, V., Dominici, P. & Astegno, A. (2018) Towards understanding plant calcium signaling through calmodulin-like proteins: a biochemical and structural perspective. International Journal of Molecular Sciences, 19, 1-18.
Leba, L.-J., Cheval, C., Ortiz-Martín, I., Ranty, B., Beuzón, C.R., Galaud, J.-P. et al. (2012) CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. The Plant Journal, 71, 976-989.
Lee, H.-J. & Seo, P.J. (2021) Ca2+talyzing initial responses to environmental stresses. Trends in Plant Science, 26, 849-870.
Li, J., Chen, Y., Deng, Y., Unarta, I.C., Lu, Q., Huang, X. et al. (2017) Ca2+-induced rigidity change of the myosin VIIa IQ motif-single α helix lever arm extension. Structure (London, England: 1993), 25(579-591), 579-591.
Li, Z. & Sacks, D.B. (2003) Elucidation of the interaction of calmodulin with the IQ motifs of IQGAP1. Journal of Biological Chemistry, 278, 4347-4352.
Liu, J., Whalley, H.J. & Knight, M.R. (2015) Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses. New Phytologist, 208, 174-187.
McAinsh, M.R. & Ng, C.K.-Y. (2013) Measurement of cytosolic-free Ca2+ in plant tissue. Methods in Molecular Biology, 93, 327-341.
McCormack, E. & Braam, J. (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytologist, 159, 585-598.
McCormack, E., Tsai, Y.-C. & Braam, J. (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends in Plant Science, 10, 383-389.
Mehta, S. & Zhang, J. (2015) Dynamic visualization of calcium-dependent signaling in cellular microdomains. Cell Calcium, 58, 333-341.
Miao, Y. & Jiang, L. (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nature Protocols, 2, 2348-2353.
Mitra, D., Klemm, S., Kumari, P., Quegwer, J., Möller, B., Poeschl, Y. et al. (2019) Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. Journal of Experimental Botany, 70, 529-543.
Murashige, T. & Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
Ogunrinde, A., Munro, K., Davidson, A., Ubaid, M. & Snedden, W.A. (2017) Arabidopsis calmodulin-like proteins, CML15 and CML16 possess biochemical properties distinct from calmodulin and show non-overlapping tissue expression patterns. Frontiers in Plant Science, 8, 8.
Oldroyd, G.E.D. & Downie, J.A. (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annual Review of Plant Biology, 59, 519-546.
Pathmanathan, S., Elliott, S.F., McSwiggen, S., Greer, B., Harriott, P., Irvine, G.B. et al. (2008) IQ motif selectivity in human IQGAP1: binding of myosin essential light chain and S100B. Molecular and Cellular Biochemistry, 318, 43-51.
Pedretti, M., Conter, C., Dominici, P. & Astegno, A. (2020) SAC3B is a target of CML19, the centrin 2 of Arabidopsis thaliana. Biochemical Journal, 477, 173-189.
Peremyslov, V.V., Klocko, A.L., Fowler, J.E. & Dolja, V.V. (2012) Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin. Frontiers in Plant Science, 3, 184.
Persechini, A. & Cronk, B. (1999) The relationship between the free concentrations of Ca2+ and Ca2+-calmodulin in intact cells. Journal of Biological Chemistry, 274, 6827-6830.
Poovaiah, B.W., Du, L., Wang, H. & Yang, T. (2013) Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiology, 163, 531-542.
Powell, C.J., Jenkins, M.L., Parker, M.L., Ramaswamy, R., Kelsen, A., Warshaw, D.M. et al. (2017) Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex. Journal of Biological Chemistry, 292, 19469-19477.
Schiestl, R.H. & Gietz, R.D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Current Genetics, 16, 339-346.
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675.
Scholz, S.S., Vadassery, J., Heyer, M., Reichelt, M., Bender, K.W., Snedden, W.A. et al. (2014) Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. Molecular Plant, 7, 1712-1726.
Shen, M., Zhang, N., Zheng, S., Zhang, W.B., Zhang, H.M., Lu, Z. et al. (2016) Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor. Proceedings of the National Academy of Sciences, 113, E5812-E5820.
Sievers, F. & Higgins, D.G. (2018) Clustal omega for making accurate alignments of many protein sequences. Protein Science, 27, 135-145.
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W. et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology, 7, 539.
Taiakina, V., Boone, A.N., Fux, J., Senatore, A., Weber-Adrian, D., Guillemette, J.G. et al. (2013) The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels. PLoS One, 8, e61765.
Teresinski, H.J., Gidda, S.K., Nguyen, T.N.D., Howard, N.J.M., Porter, B.K., Grimberg, N. et al. (2019) An RK/ST C-terminal motif is required for targeting of OEP7.2 and a subset of other arabidopsis tail-anchored proteins to the plastid outer envelope membrane. Plant and Cell Physiology, 60, 516-537.
Tian, W., Wang, C., Gao, Q., Li, L. & Luan, S. (2020) Calcium spikes, waves and oscillations in plant development and biotic interactions. Nature Plants, 6, 750-759.
Tsai, Y.-C., Koo, Y., Delk, N.A., Gehl, B. & Braam, J. (2013) Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. The Plant Journal, 73, 325-335.
Vadassery, J., Reichelt, M., Hause, B., Gershenzon, J., Boland, W. & Mithöfer, A. (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiology, 159, 1159-1175.
Vallone, R., La Verde, V., D'Onofrio, M., Giorgetti, A., Dominici, P., & Astegno, A. (2016) Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana. Protein Science, 25, 1461-1471.
Vanderbeld, B. & Snedden, W.A. (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Molecular Biology, 64, 683-697.
Wang, M., Herrmann, C.J., Simonovic, M., Szklarczyk, D. & Mering, C. (2015) Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics, 15, 3163-3168.
Wendrich, J.R., Yang, B.-J., Mijnhout, P., Xue, H.-W., Rybel, B. & Weijers, D. et al. (2018) IQD proteins integrate auxin and calcium signaling to regulate microtubule dynamics during Arabidopsis development. BioRxiv, 275560. https://doi.org/10.1101/275560
Wilkins, K.A., Matthus, E., Swarbreck, S.M. & Davies, J.M. (2016) Calcium-mediated abiotic stress signaling in roots. Frontiers in Plant Science, 7, 1296.
Willems, P., Horne, A., Van Parys, T., Goormachtig, S., De Smet, I., Botzki, A. et al. (2019) The plant PTM viewer, a central resource for exploring plant protein modifications. The Plant Journal, 99, 752-762.
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. & Provart, N.J. (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One, 2, e718.
Wu, S.-Z. & Bezanilla, M. (2014) Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. eLife, 3, e03498.
Zhang, M., Tanaka, T. & Ikura, M. (1995) Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Structural & Molecular Biology, 2, 758-767.
Zhu, X., Dunand, C., Snedden, W. & Galaud, J.-P. (2015) CaM and CML emergence in the green lineage. Trends in Plant Science, 20, 483-489.
Zhu, X., Wang, P., Bai, Z., Herde, M., Ma, Y., Li, N. et al. (2022) Calmodulin-like protein CML24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana. New Phytologist, 233, 2471-2487.