Chemogenetic modulation of astrocytes and microglia: State-of-the-art and implications in neuroscience.

CNS disorders DREADDs astrocytes chemogenetics designer receptors exclusively activated by designer drugs gene therapy microglia

Journal

Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785

Informations de publication

Date de publication:
09 2023
Historique:
revised: 04 05 2023
received: 24 01 2023
accepted: 12 05 2023
medline: 6 7 2023
pubmed: 24 5 2023
entrez: 24 5 2023
Statut: ppublish

Résumé

Insights into the role astrocytes and microglia play in normal and diseased brain functioning has expanded drastically over the last decade. Recently, chemogenetic tools have emerged as cutting-edge techniques, allowing targeted and spatiotemporal precise manipulation of a specific glial cell type. As a result, significant advances in astrocyte and microglial cell function have been made, showing how glial cells can intervene in central nervous system (CNS) functions such as cognition, reward and feeding behavior in addition to their established contribution in brain diseases, pain, and CNS inflammation. Here, we discuss the latest insights in glial functions in health and disease that have been made through the application of chemogenetics. We will focus on the manipulation of intracellular signaling pathways induced by activation of the designer receptors exclusively activated by designer drugs (DREADDs) in astrocytes and microglia. We will also elaborate on some of the potential pitfalls and the translational potential of the DREADD technology.

Identifiants

pubmed: 37222453
doi: 10.1002/glia.24390
doi:

Substances chimiques

Designer Drugs 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2071-2095

Informations de copyright

© 2023 The Authors. GLIA published by Wiley Periodicals LLC.

Références

Adamsky, A., Kol, A., Kreisel, T., Doron, A., Ozeri-Engelhard, N., Melcer, T., Refaeli, R., Horn, H., Regev, L., Groysman, M., London, M., & Goshen, I. (2018). Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell, 174, 59-71.e14.
Agalave, N. M., Larsson, M., Abdelmoaty, S., Su, J., Baharpoor, A., Lundbäck, P., Palmblad, K., Andersson, U., Harris, H., & Svensson, C. I. (2014). Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain, 155(9), 1802-1813.
Agulhon, C., Boyt, K. M., Xie, A. X., Friocourt, F., Roth, B. L., & McCarthy, K. D. (2013). Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo. The Journal of Physiology, 591(22), 5599-5609.
Agulhon, C., Fiacco, T. A., & McCarthy, K. D. (2010). Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science, 327(5970), 1250-1254.
Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H., & Deisseroth, K. (2009). Temporally precise in vivo control of intracellular signalling. Nature, 458(7241), 1025-1029.
Alam, Q., Alam, M. Z., Mushtaq, G., Damanhouri, G. A., Rasool, M., Kamal, M. A., et al. (2016). Inflammatory process in Alzheimer's and Parkinson's diseases: Central role of cytokines. Current Pharmaceutical Design, 22(5), 541-548.
Allaman, I., Lengacher, S., Magistretti, P. J., & Pellerin, L. (2003). A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. American Journal of Physiology. Cell Physiology, 284(3), C696-C704.
Allen, N. J., & Barres, B. A. (2009). Neuroscience: Glia-more than just brain glue. Nature, 457(7230), 675-677.
Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C., & Zhuang, X. (2023). Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell, 186(1), 194-208.e18.
Alvarez-Ferradas, C., Morales, J. C., Wellmann, M., Nualart, F., Roncagliolo, M., Fuenzalida, M., et al. (2015). Enhanced astroglial Ca2+ signaling increases excitatory synaptic strength in the epileptic brain. GLIA, 63(9), 1507-1521.
Alves, M., Smith, J., & Engel, T. (2019). Differential expression of the metabotropic P2Y receptor family in the cortex following status epilepticus and neuroprotection. Frontiers in Pharmacology, 10, 1558.
Andersson, M., Blomstrand, F., & Hanse, E. (2007). Astrocytes play a critical role in transient heterosynaptic depression in the rat hippocampal CA1 region. The Journal of Physiology, 585(Pt 3), 843-852.
Araki, T., Ikegaya, Y., & Koyama, R. (2021). The effects of microglia- and astrocyte-derived factors on neurogenesis in health and disease. The European Journal of Neuroscience, 54(5), 5880-5901.
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S., & Roth, B. L. (2007). Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5163-5168.
Aronica, E., van Vliet, E. A., Mayboroda, O. A., Troost, D., da Silva, F. H., & Gorter, J. A. (2000). Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. The European Journal of Neuroscience, 12(7), 2333-2344.
Atasoy, D., & Sternson, S. M. (2018). Chemogenetic tools for causal cellular and neuronal biology. Physiological Reviews, 98(1), 391-418.
Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., Macvicar, B. A., & Newman, E. A. (2010). Glial and neuronal control of brain blood flow. Nature, 468(7321), 232-243.
Avignone, E., Ulmann, L., Levavasseur, F., Rassendren, F., & Audinat, E. (2008). Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. The Journal of Neuroscience, 28(37), 9133-9144.
Baerentzen, S., Casado-Sainz, A., Lange, D., Shalgunov, V., Tejada, I. M., Xiong, M., L'Estrade, E. T., Edgar, F. G., Lee, H., Herth, M. M., & Palner, M. (2019). The chemogenetic receptor ligand clozapine N-oxide induces. Frontiers in Neuroscience, 13, 187.
Bang, J., Kim, H. Y., & Lee, H. (2016). Optogenetic and chemogenetic approaches for studying astrocytes and gliotransmitters. Experimental Neurobiology., 25(5), 205-221.
Barger, S. W., Goodwin, M. E., Porter, M. M., & Beggs, M. L. (2007). Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. Journal of Neurochemistry, 101(5), 1205-1213.
Bar-Klein, G., Cacheaux, L. P., Kamintsky, L., Prager, O., Weissberg, I., Schoknecht, K., Cheng, P., Kim, S. Y., Wood, L., Heinemann, U., Kaufer, D., & Friedman, A. (2014). Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Annals of Neurology, 75(6), 864-875.
Bazargani, N., & Attwell, D. (2016). Astrocyte calcium signaling: The third wave. Nature Neuroscience, 19(2), 182-189.
Bennett, M. L., Bennett, F. C., Liddelow, S. A., Ajami, B., Zamanian, J. L., Fernhoff, N. B., Mulinyawe, S. B., Bohlen, C. J., Adil, A., Tucker, A., Weissman, I. L., Chang, E. F., Li, G., Grant, G. A., Hayden Gephart, M. G., & Barres, B. A. (2016). New tools for studying microglia in the mouse and human CNS. Proceedings of the National Academy of Sciences of the United States of America, 113(12), E1738-E1746.
Biber, K., Laurie, D. J., Berthele, A., Sommer, B., Tolle, T. R., Gebicke-Harter, P. J., et al. (1999). Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. Journal of Neurochemistry, 72(4), 1671-1680.
Bindocci, E., Savtchouk, I., Liaudet, N., Becker, D., Carriero, G., & Volterra, A. (2017). Three-dimensional Ca(2+) imaging advances understanding of astrocyte biology. Science, 356(6339), eaai8185.
Binning, W., Hogan-Cann, A. E., Yae Sakae, D., Maksoud, M., Ostapchenko, V., Al-Onaizi, M., et al. (2020). Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain, Behavior, and Immunity, 88, 791-801.
Bisht, K., Okojie, K. A., Sharma, K., Lentferink, D. H., Sun, Y. Y., Chen, H. R., Uweru, J. O., Amancherla, S., Calcuttawala, Z., Campos-Salazar, A. B., Corliss, B., Jabbour, L., Benderoth, J., Friestad, B., Mills, W. A., III, Isakson, B. E., Tremblay, M. È., Kuan, C. Y., & Eyo, U. B. (2021). Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nature Communications, 12(1), 5289.
Boisvert, M. M., Erikson, G. A., Shokhirev, M. N., & Allen, N. J. (2018). The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Reports, 22(1), 269-285.
Bolton, J. L., Short, A. K., Othy, S., Kooiker, C. L., Shao, M., Gunn, B. G., Beck, J., Bai, X., Law, S. M., Savage, J. C., Lambert, J. J., Belelli, D., Tremblay, M. È., Cahalan, M. D., & Baram, T. Z. (2022). Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Reports, 38(13), 110600.
Borghammer, P., Chakravarty, M., Jonsdottir, K. Y., Sato, N., Matsuda, H., Ito, K., Arahata, Y., Kato, T., & Gjedde, A. (2010). Cortical hypometabolism and hypoperfusion in Parkinson's disease is extensive: Probably even at early disease stages. Brain Structure & Function, 214(4), 303-317.
Bosson, A., Boisseau, S., Buisson, A., Savasta, M., & Albrieux, M. (2015). Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata. GLIA, 63(4), 673-683.
Boulay, A. C., Mazare, N., Saubamea, B., & Cohen-Salmon, M. (2019). Preparing the astrocyte perivascular Endfeet transcriptome to investigate astrocyte molecular regulations at the brain-vascular Interface. Methods in Molecular Biology, 1938, 105-116.
Bracko, O., Njiru, B. N., Swallow, M., Ali, M., Haft-Javaherian, M., & Schaffer, C. B. (2020). Increasing cerebral blood flow improves cognition into late stages in Alzheimer's disease mice. Journal of Cerebral Blood Flow and Metabolism, 40(7), 1441-1452.
Broadhead, M. J., & Miles, G. B. (2020). Bi-directional communication between neurons and astrocytes modulates spinal motor circuits. Frontiers in Cellular Neuroscience, 14, 30.
Burda, J. E., & Sofroniew, M. V. (2014). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron, 81(2), 229-248.
Burnett, C. J., & Krashes, M. J. (2016). Resolving behavioral output via chemogenetic designer receptors exclusively activated by designer drugs. The Journal of Neuroscience, 36(36), 9268-9282.
Byrnes, K. R., Stoica, B., Riccio, A., Pajoohesh-Ganji, A., Loane, D. J., & Faden, A. I. (2009). Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Annals of Neurology, 66(1), 63-74.
Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., & Barres, B. A. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. The Journal of Neuroscience, 28(1), 264-278.
Calovi, S., Mut-Arbona, P., & Sperlágh, B. (2019). Microglia and the purinergic signaling system. Neuroscience, 405, 137-147.
Cansell, C., Stobbe, K., Sanchez, C., Le Thuc, O., Mosser, C. A., Ben-Fradj, S., et al. (2021). Dietary fat exacerbates postprandial hypothalamic inflammation involving glial fibrillary acidic protein-positive cells and microglia in male mice. GLIA, 69(1), 42-60.
Cao, X., Li, L. P., Wang, Q., Wu, Q., Hu, H. H., Zhang, M., Fang, Y. Y., Zhang, J., Li, S. J., Xiong, W. C., Yan, H. C., Gao, Y. B., Liu, J. H., Li, X. W., Sun, L. R., Zeng, Y. N., Zhu, X. H., & Gao, T. M. (2013). Astrocyte-derived ATP modulates depressive-like behaviors. Nature Medicine, 19(6), 773-777.
Cardozo Pinto, D. F., & Lammel, S. (2019). Hot topic in optogenetics: New implications of in vivo tissue heating. Nature Neuroscience, 22(7), 1039-1041.
Cartier, N., Lewis, C. A., Zhang, R., & Rossi, F. M. (2014). The role of microglia in human disease: Therapeutic tool or target? Acta Neuropathologica, 128(3), 363-380.
Casper, K. B., & McCarthy, K. D. (2006). GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Molecular and Cellular Neurosciences, 31(4), 676-684.
Cavaccini, A., Durkee, C., Kofuji, P., Tonini, R., & Araque, A. (2020). Astrocyte signaling gates long-term depression at corticostriatal synapses of the direct pathway. The Journal of Neuroscience, 40(30), 5757-5768.
Chai, H., Diaz-Castro, B., Shigetomi, E., Monte, E., Octeau, J. C., Yu, X., Cohn, W., Rajendran, P. S., Vondriska, T. M., Whitelegge, J. P., Coppola, G., & Khakh, B. S. (2017). Neural circuit-specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence. Neuron, 95(3), 531-549.
Chen, N., Sugihara, H., Kim, J., Fu, Z., Barak, B., Sur, M., Feng, G., & Han, W. (2016). Direct modulation of GFAP-expressing glia in the arcuate nucleus bi-directionally regulates feeding. eLife, 5, 5.
Chen, X., Choo, H., Huang, X. P., Yang, X., Stone, O., Roth, B. L., & Jin, J. (2015). The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chemical Neuroscience, 6(3), 476-484.
Coffey, K. R., Lesiak, A. J., Marx, R. G., Vo, E. K., Garden, G. A., & Neumaier, J. F. (2022). A cAMP-related gene network in microglia is inversely regulated by morphine tolerance and withdrawal. Biological Psychiatry Global Open Science, 2(2), 180-189.
Colella, M., Zinni, M., Pansiot, J., Cassanello, M., Mairesse, J., Ramenghi, L., & Baud, O. (2018). Modulation of microglial activation by adenosine A2a receptor in animal models of perinatal brain injury. Frontiers in Neurology, 9, 605.
Coleman, L. G., Zou, J., & Crews, F. T. (2020). Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. Journal of Neuroinflammation, 17(1), 27.
Colton, C. A., & Gilbert, D. L. (1987). Production of superoxide anions by a CNS macrophage, the microglia. FEBS Letters, 223(2), 284-288.
Costa, A., Haage, V., Yang, S., Wegner, S., Ersoy, B., Ugursu, B., Rex, A., Kronenberg, G., Gertz, K., Endres, M., Wolf, S. A., & Kettenmann, H. (2021). Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury. Brain, Behavior, and Immunity, 91, 89-104.
Coward, P., Wada, H. G., Falk, M. S., Chan, S. D., Meng, F., Akil, H., et al. (1998). Controlling signaling with a specifically designed Gi-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 95(1), 352-357.
Crews, F. T., Lawrimore, C. J., Walter, T. J., & Coleman, L. G. (2017). The role of neuroimmune signaling in alcoholism. Neuropharmacology, 122, 56-73.
Császár, E., Lénárt, N., Cserép, C., Környei, Z., Fekete, R., Pósfai, B., Balázsfi, D., Hangya, B., Schwarcz, A. D., Szabadits, E., Szöllősi, D., Szigeti, K., Máthé, D., West, B. L., Sviatkó, K., Brás, A. R., Mariani, J. C., Kliewer, A., Lenkei, Z., … Dénes, Á. (2022). Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions. The Journal of Experimental Medicine, 219(3), e20211071.
Deffains, M., Nguyen, T. H., Orignac, H., Biendon, N., Dovero, S., Bezard, E., & Boraud, T. (2021). In vivo electrophysiological validation of DREADD-based modulation of pallidal neurons in the non-human primate. The European Journal of Neuroscience, 53(7), 2192-2204.
Delekate, A., Fuchtemeier, M., Schumacher, T., Ulbrich, C., Foddis, M., & Petzold, G. C. (2014). Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model. Nature Communications, 5, 5422.
Desloovere, J., Boon, P., Larsen, L. E., Merckx, C., Goossens, M. G., Van den Haute, C., et al. (2019). Long-term chemogenetic suppression of spontaneous seizures in a mouse model for temporal lobe epilepsy. Epilepsia, 60(11), 2314-2324.
D'haeseleer, M., Hostenbach, S., Peeters, I., Sankari, S. E., Nagels, G., De Keyser, J., et al. (2015). Cerebral hypoperfusion: A new pathophysiologic concept in multiple sclerosis? Journal of Cerebral Blood Flow and Metabolism, 35(9), 1406-1410.
Ding, F., O'Donnell, J., Thrane, A. S., Zeppenfeld, D., Kang, H., Xie, L., et al. (2013). alpha1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium, 54(6), 387-394.
Ding, X., Liao, F. F., Su, L., Yang, X., Yang, W., Ren, Q. H., Zhang, J. Z., & Wang, H. M. (2022). Sciatic nerve block downregulates the BDNF pathway to alleviate the neonatal incision-induced exaggeration of incisional pain via decreasing microglial activation. Brain, Behavior, and Immunity, 105, 204-224.
Dong, J. H., Wang, Y. J., Cui, M., Wang, X. J., Zheng, W. S., Ma, M. L., Yang, F., He, D. F., Hu, Q. X., Zhang, D. L., Ning, S. L., Liu, C. H., Wang, C., Wang, Y., Li, X. Y., Yi, F., Lin, A., Kahsai, A. W., Cahill, T. J., III, … Sun, J. P. (2017). Adaptive activation of a stress response pathway improves learning and memory through Gs and beta-Arrestin-1-regulated lactate metabolism. Biological Psychiatry, 81(8), 654-670.
Douglass, J. D., Valdearcos, M., Ness, K. M., Wyse-Jackson, A., Dorfman, M. D., Frey, J. M., et al. (2022). Microglial inflammatory activation paradoxically improves glucose tolerance during diet-induced obesity. Biorxiv.
Duffy, S., & MacVicar, B. A. (1995). Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. The Journal of Neuroscience, 15(8), 5535-5550.
Durkee, C. A., Covelo, A., Lines, J., Kofuji, P., Aguilar, J., & Araque, A. (2019). Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. GLIA, 67(6), 1076-1093.
Duschek, S., Hoffmann, A., Reyes Del Paso, G. A., & Montoro, C. I. (2021). Short-term cerebral blood flow variability in major depressive disorder. Journal of Affective Disorders, 282, 1120-1124.
EbrahimAmini, A., Mylvaganam, S., Bazzigaluppi, P., Khazaei, M., Velumian, A., Stefanovic, B., & Carlen, P. L. (2021). In vivo neocortical [K]o modulation by targeted stimulation of astrocytes. International Journal of Molecular Sciences, 22(16), 8658.
Elmore, M. R., Najafi, A. R., Koike, M. A., Dagher, N. N., Spangenberg, E. E., Rice, R. A., et al. (2014). Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron, 82(2), 380-397.
Elsayed, M., & Magistretti, P. J. (2015). A new outlook on mental illnesses: Glial involvement beyond the glue. Frontiers in Cellular Neuroscience, 9, 468.
Eme-Scolan, E., & Dando, S. J. (2020a). Tools and approaches for studying microglia In vivo. Frontiers in Immunology, 11, 583647.
Eme-Scolan, E., & Dando, S. J. (2020b). Tools and approaches for studying microglia. Frontiers in Immunology, 11, 583647.
English, J. G., & Roth, B. L. (2015). Chemogenetics-a transformational and translational platform. JAMA Neurology, 72(11), 1361-1366.
Enomoto, S., & Kato, T. A. (2021). Involvement of microglia in disturbed fear memory regulation: Possible microglial contribution to the pathophysiology of posttraumatic stress disorder. Neurochemistry International, 142, 104921.
Erickson, E. K., DaCosta, A. J., Mason, S. C., Blednov, Y. A., Mayfield, R. D., & Harris, R. A. (2020). Cortical astrocytes regulate ethanol consumption and intoxication in mice. Neuropsychopharmacology, 46, 500-508.
Eriksson, P. S., Hansson, E., & Ronnback, L. (1991). Mu and delta opiate receptors in neuronal and astroglial primary cultures from various regions of the brain-Coupling with adenylate cyclase, localisation on the same neurones and association with dopamine (D1) receptor adenylate cyclase. Neuropharmacology, 30(11), 1233-1239.
Ernst, J., Hock, A., Henning, A., Seifritz, E., Boeker, H., & Grimm, S. (2017). Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Molecular Psychiatry, 22(1), 113-119.
Farhy-Tselnicker, I., & Allen, N. J. (2018). Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Development, 13(1), 7.
Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G., & Haydon, P. G. (2006). Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. The Journal of Neuroscience, 26(36), 9312-9322.
Fiacco, T. A., Agulhon, C., Taves, S. R., Petravicz, J., Casper, K. B., Dong, X., Chen, J., & McCarthy, K. D. (2007). Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron, 54(4), 611-626.
Fiacco, T. A., & McCarthy, K. D. (2018). Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. The Journal of Neuroscience, 38(1), 3-13.
Fogarty, M. J., Mu, E. W. H., Lavidis, N. A., Noakes, P. G., & Bellingham, M. C. (2017). Motor areas show altered dendritic structure in an amyotrophic lateral sclerosis mouse model. Frontiers in Neuroscience, 11, 609.
Forcelli, P. A. (2017). Applications of optogenetic and chemogenetic methods to seizure circuits: Where to go next? Journal of Neuroscience Research, 95(12), 2345-2356.
Forsberg, D., Ringstedt, T., & Herlenius, E. (2017). Astrocytes release prostaglandin E2 to modify respiratory network activity. eLife, 6, 6.
Foust, K. D., Nurre, E., Montgomery, C. L., Hernandez, A., Chan, C. M., & Kaspar, B. K. (2009). Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nature Biotechnology, 27(1), 59-65.
Fujita, H., Tanaka, J., Maeda, N., & Sakanaka, M. (1998). Adrenergic agonists suppress the proliferation of microglia through beta 2-adrenergic receptor. Neuroscience Letters, 242(1), 37-40.
Fulmer, C. G., VonDran, M. W., Stillman, A. A., Huang, Y., Hempstead, B. L., & Dreyfus, C. F. (2014). Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. The Journal of Neuroscience, 34(24), 8186-8196.
Galvan, A., Raper, J., Hu, X., Paré, J. F., Bonaventura, J., Richie, C. T., Michaelides, M., Mueller, S. A. L., Roseboom, P. H., Oler, J. A., Kalin, N. H., Hall, R. A., & Smith, Y. (2019). Ultrastructural localization of DREADDs in monkeys. The European Journal of Neuroscience, 50(5), 2801-2813.
Gao, V., Suzuki, A., Magistretti, P. J., Lengacher, S., Pollonini, G., Steinman, M. Q., & Alberini, C. M. (2016). Astrocytic beta2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 113(30), 8526-8531.
Gao, Z., Zhu, Q., Zhang, Y., Zhao, Y., Cai, L., Shields, C. B., & Cai, J. (2013). Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Molecular Neurobiology, 48(3), 690-701.
Gao, Z. G., Duong, H. T., Sonina, T., Kim, S. K., Van Rompaey, P., Van Calenbergh, S., et al. (2006). Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists. Journal of Medicinal Chemistry, 49(9), 2689-2702.
Geng, Y., Li, Z., Zhu, J., Du, C., Yuan, F., Cai, X., et al. (2023). Advances in Optogenetics applications for central nervous system injuries. Journal of Neurotrauma. Advance online publication. https://doi.org/10.1089/neu.2022.0290
Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa-Shah, P., Rodriguez, L. A., Ellis, R. J., Richie, C. T., Harvey, B. K., Dannals, R. F., Pomper, M. G., Bonci, A., & Michaelides, M. (2017). Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science, 357(6350), 503-507.
Goossens, M. G., Larsen, L. E., Vergaelen, M., Wadman, W., Van den Haute, C., Brackx, W., et al. (2021). Level of hM4D(Gi) DREADD expression determines inhibitory and neurotoxic effects in the hippocampus. eNeuro, 8(6), ENEURO.0105-21.2021.
Gould, T., Chen, L., Emri, Z., Pirttimaki, T., Errington, A. C., Crunelli, V., & Parri, H. R. (2014). GABA(B) receptor-mediated activation of astrocytes by gamma-hydroxybutyric acid. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1654), 20130607.
Grace, P. M., Strand, K. A., Galer, E. L., Urban, D. J., Wang, X., Baratta, M. V., Fabisiak, T. J., Anderson, N. D., Cheng, K., Greene, L. I., Berkelhammer, D., Zhang, Y., Ellis, A. L., Yin, H. H., Campeau, S., Rice, K. C., Roth, B. L., Maier, S. F., & Watkins, L. R. (2016). Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 113(24), E3441-E3450.
Grace, P. M., Wang, X., Strand, K. A., Baratta, M. V., Zhang, Y., Galer, E. L., Yin, H., Maier, S. F., & Watkins, L. R. (2018). DREADDed microglia in pain: Implications for spinal inflammatory signaling in male rats. Experimental Neurology, 304, 125-131.
Gu, C., Wang, F., Zhang, Y. T., Wei, S. Z., Liu, J. Y., Sun, H. Y., Wang, G. H., & Liu, C. F. (2021). Microglial MT1 activation inhibits LPS-induced neuroinflammation via regulation of metabolic reprogramming. Aging Cell, 20(6), e13375.
Guerra-Gomes, S., Sousa, N., Pinto, L., & Oliveira, J. F. (2017). Functional roles of astrocyte calcium elevations: From synapses to behavior. Frontiers in Cellular Neuroscience, 11, 427.
Guettier, J. M., Gautam, D., Scarselli, M., Ruiz de Azua, I., Li, J. H., Rosemond, E., et al. (2009). A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19197-19202.
Guru, A., Post, R. J., Ho, Y. Y., & Warden, M. R. (2015). Making sense of optogenetics. The International Journal of Neuropsychopharmacology, 18(11), pyv079.
Guttenplan, K. A., & Liddelow, S. A. (2019). Astrocytes and microglia: Models and tools. The Journal of Experimental Medicine, 216(1), 71-83.
Gyoneva, S., Shapiro, L., Lazo, C., Garnier-Amblard, E., Smith, Y., Miller, G. W., & Traynelis, S. F. (2014). Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson's disease. Neurobiology of Disease, 67, 191-202.
Gyoneva, S., & Traynelis, S. F. (2013). Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. The Journal of Biological Chemistry, 288(21), 15291-15302.
Hablitz, L. M., Gunesch, A. N., Cravetchi, O., Moldavan, M., & Allen, C. N. (2020). Cannabinoid signaling recruits astrocytes to modulate presynaptic function in the suprachiasmatic nucleus. eNeuro., 7(1), ENEURO.0081.
Haimon, Z., Volaski, A., Orthgiess, J., Boura-Halfon, S., Varol, D., Shemer, A., Yona, S., Zuckerman, B., David, E., Chappell-Maor, L., Bechmann, I., Gericke, M., Ulitsky, I., & Jung, S. (2018). Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nature Immunology, 19(6), 636-644.
Hamby, M. E., Coppola, G., Ao, Y., Geschwind, D. H., Khakh, B. S., & Sofroniew, M. V. (2012). Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. The Journal of Neuroscience, 32(42), 14489-14510.
Hammond, T. R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., Walker, A. J., Gergits, F., Segel, M., Nemesh, J., Marsh, S. E., Saunders, A., Macosko, E., Ginhoux, F., Chen, J., Franklin, R. J. M., Piao, X., McCarroll, S. A., & Stevens, B. (2019). Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity, 50(1), 253-271.
Haque, M. E., Kim, I. S., Jakaria, M., Akther, M., & Choi, D. K. (2018). Importance of GPCR-mediated microglial activation in Alzheimer's disease. Frontiers in Cellular Neuroscience, 12, 258.
Herculano-Houzel, S. (2014). The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. GLIA, 62(9), 1377-1391.
Hertz, L., Lovatt, D., Goldman, S. A., & Nedergaard, M. (2010). Adrenoceptors in brain: Cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochemistry International, 57(4), 411-420.
Hertz, L., Peng, L., & Dienel, G. A. (2007). Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow and Metabolism, 27(2), 219-249.
Hertz, L., Xu, J., Song, D., Du, T., Li, B., Yan, E., et al. (2015). Astrocytic glycogenolysis: Mechanisms and functions. Metabolic Brain Disease, 30(1), 317-333.
Hirbec, H., Deglon, N., Foo, L. C., Goshen, I., Grutzendler, J., Hangen, E., et al. (2020). Emerging technologies to study glial cells. GLIA, 68(9), 1692-1728.
Horvat, A., & Vardjan, N. (2019). Astroglial cAMP signalling in space and time. Neuroscience Letters, 689, 5-10.
Horvat, A., Zorec, R., & Vardjan, N. (2016). Adrenergic stimulation of single rat astrocytes results in distinct temporal changes in intracellular Ca(2+) and cAMP-dependent PKA responses. Cell Calcium, 59(4), 156-163.
Huang, K. P. (1989). The mechanism of protein kinase C activation. Trends in Neurosciences, 12(11), 425-432.
Huang, R., Han, S., Qiu, Y., Zhou, T., Wu, Y., Du, H., et al. (2022). Glucocorticoid regulation of lactate release from spinal astrocytes contributes to the induction of spinal LTP of C-fiber-evoked field potentials and the development of mechanical allodynia. Neuropharmacology, 219, 109253.
Hudry, E., & Vandenberghe, L. H. (2019). Therapeutic AAV gene transfer to the nervous system: A clinical reality. Neuron, 101(5), 839-862.
Irino, Y., Nakamura, Y., Inoue, K., Kohsaka, S., & Ohsawa, K. (2008). Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia. Journal of Neuroscience Research, 86(7), 1511-1519.
Jacobson, K. A., Gao, Z. G., Chen, A., Barak, D., Kim, S. A., Lee, K., Link, A., Rompaey, P. V., van Calenbergh, S., & Liang, B. T. (2001). Neoceptor concept based on molecular complementarity in GPCRs: A mutant adenosine A(3) receptor with selectively enhanced affinity for amine-modified nucleosides. Journal of Medicinal Chemistry, 44(24), 4125-4136.
Jendryka, M., Palchaudhuri, M., Ursu, D., van der Veen, B., Liss, B., Kätzel, D., Nissen, W., & Pekcec, A. (2019). Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Scientific Reports, 9(1), 4522.
Jiang, J., Cui, H., & Rahmouni, K. (2017). Optogenetics and pharmacogenetics: Principles and applications. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 313(6), R633-R645.
Jiang, R., Diaz-Castro, B., Looger, L. L., & Khakh, B. S. (2016). Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington's disease model mice. The Journal of Neuroscience, 36(12), 3453-3470.
Jones, M. E., Paniccia, J. E., Lebonville, C. L., Reissner, K. J., & Lysle, D. T. (2018). Chemogenetic manipulation of dorsal hippocampal astrocytes protects against the development of stress-enhanced fear learning. Neuroscience, 388, 45-56.
Joo, E. Y., Tae, W. S., & Hong, S. B. (2008). Cerebral blood flow abnormality in patients with idiopathic generalized epilepsy. Journal of Neurology, 255(4), 520-525.
Jourdain, P., Rothenfusser, K., Ben-Adiba, C., Allaman, I., Marquet, P., & Magistretti, P. J. (2018). Dual action of L-lactate on the activity of NR2B-containing NMDA receptors: From potentiation to neuroprotection. Scientific Reports, 8(1), 13472.
Kamali, A. N., Zian, Z., Bautista, J. M., Hamedifar, H., Hossein-Khannazer, N., Hosseinzadeh, R., et al. (2021). The potential role of pro-inflammatory and anti-inflammatory cytokines in epilepsy pathogenesis. Endocrine, Metabolic & Immune Disorders Drug Targets, 21(10), 1760-1774.
Kang, S., Hong, S. I., Lee, J., Peyton, L., Baker, M., Choi, S., Kim, H., Chang, S. Y., & Choi, D. S. (2020). Activation of astrocytes in the dorsomedial striatum facilitates transition from habitual to goal-directed reward-seeking behavior. Biological Psychiatry, 88(10), 797-808.
Kasim, N., Khare, S., Sandouk, Z., & Chan, C. (2021). Impaired glucose tolerance and indeterminate glycemia in cystic fibrosis. Journal of Clinical & Translational Endocrinology, 26, 100275.
Keifer, O., Kambara, K., Lau, A., Makinson, S., & Bertrand, D. (2020). Chemogenetics a robust approach to pharmacology and gene therapy. Biochemical Pharmacology, 175, 113889.
Kettenmann, H., & Verkhratsky, A. (2008). Neuroglia: The 150 years after. Trends in Neurosciences, 31(12), 653-659.
Khairova, R. A., Machado-Vieira, R., Du, J., & Manji, H. K. (2009). A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. The International Journal of Neuropsychopharmacology, 12(4), 561-578.
Khan, K. M., Bierlein-De La Rosa, G., Biggerstaff, N., Pushpavathi Selvakumar, G., Wang, R., Mason, S., et al. (2023). Adolescent ethanol drinking promotes hyperalgesia, neuroinflammation and serotonergic deficits in mice that persist into adulthood. Brain, Behavior, and Immunity, 107, 419-431.
Kim, J. H., Rahman, M. H., Lee, W. H., & Suk, K. (2021). Chemogenetic stimulation of the G. Pharmacology Research & Perspectives, 9(6), e00822.
Kim, S. K., Hayashi, H., Ishikawa, T., Shibata, K., Shigetomi, E., Shinozaki, Y., Inada, H., Roh, S. E., Kim, S. J., Lee, G., Bae, H., Moorhouse, A. J., Mikoshiba, K., Fukazawa, Y., Koizumi, S., & Nabekura, J. (2016). Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. The Journal of Clinical Investigation, 126(5), 1983-1997.
Klawonn, A. M., Fritz, M., Castany, S., Pignatelli, M., Canal, C., Simila, F., et al. (2021). Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons. Immunity, 54(2), 225-234.
Kobayashi, K., Yamanaka, H., Fukuoka, T., Dai, Y., Obata, K., & Noguchi, K. (2008). P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. The Journal of Neuroscience, 28(11), 2892-2902.
Kobayashi, K., Yamanaka, H., Yanamoto, F., Okubo, M., & Noguchi, K. (2012). Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury. GLIA, 60(10), 1529-1539.
Kofuji, P., & Araque, A. (2021). G-protein-coupled receptors in astrocyte-neuron communication. Neuroscience, 456, 71-84.
Koh, W., Park, Y. M., Lee, S. E., & Lee, C. J. (2017). AAV-mediated astrocyte-specific gene expression under human ALDH1L1 promoter in mouse thalamus. Experimental Neurobiology, 26(6), 350-361.
Kol, A., Adamsky, A., Groysman, M., Kreisel, T., London, M., Goshen, I., et al. (2020). Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nature Neuroscience, 23, 1229-1239.
Kong, E. K., Peng, L., Chen, Y., Yu, A. C., & Hertz, L. (2002). Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochemical Research, 27(1-2), 113-120.
Korte, N., Nortley, R., & Attwell, D. (2020). Cerebral blood flow decrease as an early pathological mechanism in Alzheimer's disease. Acta Neuropathologica, 140(6), 793-810.
Kriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience, 32, 149-184.
Kubo, A., Fukui, H., Inagaki, N., Kanamura, A., & Wada, H. (1991). Histamine-induced cyclic AMP accumulation in type-1 and type-2 astrocytes in primary culture. European Journal of Pharmacology, 208(3), 249-253.
Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T., & Bacskai, B. J. (2009). Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science, 323(5918), 1211-1215.
Kuhn, S. A., van Landeghem, F. K., Zacharias, R., Färber, K., Rappert, A., Pavlovic, S., et al. (2004). Microglia express GABA(B) receptors to modulate interleukin release. Molecular and Cellular Neurosciences, 25(2), 312-322.
Langfelder, A., Okonji, E., Deca, D., Wei, W. C., & Glitsch, M. D. (2015). Extracellular acidosis impairs P2Y receptor-mediated Ca(2+) signalling and migration of microglia. Cell Calcium, 57(4), 247-256.
Lauritzen, K. H., Morland, C., Puchades, M., Holm-Hansen, S., Hagelin, E. M., Lauritzen, F., Attramadal, H., Storm-Mathisen, J., Gjedde, A., & Bergersen, L. H. (2014). Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cerebral Cortex, 24(10), 2784-2795.
Lauro, C., Chece, G., Monaco, L., Antonangeli, F., Peruzzi, G., Rinaldo, S., Paone, A., Cutruzzolà, F., & Limatola, C. (2019). Fractalkine modulates microglia metabolism in brain ischemia. Frontiers in Cellular Neuroscience, 13, 414.
Lauro, C., & Limatola, C. (2020). Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Frontiers in Immunology, 11, 493.
Leenders, A. G., & Sheng, Z. H. (2005). Modulation of neurotransmitter release by the second messenger-activated protein kinases: Implications for presynaptic plasticity. Pharmacology & Therapeutics, 105(1), 69-84.
Lerner, A., & Klein, M. (2019). Dependence, withdrawal and rebound of CNS drugs: An update and regulatory considerations for new drugs development. Brain Communications, 1(1), fcz025.
Li, F., Xu, D., Hou, K., Gou, X., & Li, Y. (2020). The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. Journal of Thrombosis and Thrombolysis, 50(4), 874-885.
Li, Q., & Barres, B. A. (2018). Microglia and macrophages in brain homeostasis and disease. Nature Reviews. Immunology, 18(4), 225-242.
Lieb, A., Weston, M., & Kullmann, D. M. (2019). Designer receptor technology for the treatment of epilepsy. eBioMedicine, 43, 641-649.
Lin, R., Zhou, Y., Yan, T., Wang, R., Li, H., Wu, Z., Zhang, X., Zhou, X., Zhao, F., Zhang, L., Li, Y., & Luo, M. (2022). Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nature Methods, 19(8), 976-985.
Liu, B., Niu, L., Shen, M. Z., Gao, L., Wang, C., Li, J., Song, L. J., Tao, Y., Meng, Q., Yang, Q. L., Gao, G. D., & Zhang, H. (2014). Decreased astroglial monocarboxylate transporter 4 expression in temporal lobe epilepsy. Molecular Neurobiology, 50(2), 327-338.
Liu, G. J., Kalous, A., Werry, E. L., & Bennett, M. R. (2006). Purine release from spinal cord microglia after elevation of calcium by glutamate. Molecular Pharmacology, 70(3), 851-859.
Liu, L., Kearns, K. N., Eli, I., Sharifi, K. A., Soldozy, S., Carlson, E. W., Scott, K. W., Sluzewski, M. F., Acton, S. T., Stauderman, K. A., Kalani, M. Y. S., Park, M., & Tvrdik, P. (2021). Microglial calcium waves during the hyperacute phase of ischemic stroke. Stroke, 52(1), 274-283.
Liu, Y., Hua, Y., Park, K., Volkow, N. D., Pan, Y., & Du, C. (2022). Cocaine's cerebrovascular vasoconstriction is associated with astrocytic Ca. Communication Biology, 5(1), 936.
Lohse, M. J., Hein, P., Hoffmann, C., Nikolaev, V. O., Vilardaga, J. P., & Bünemann, M. (2008). Kinetics of G-protein-coupled receptor signals in intact cells. British Journal of Pharmacology, 153(Suppl. 1), S125-S132.
Loryan, I., Melander, E., Svensson, M., Payan, M., König, F., Jansson, B., & Hammarlund-Udenaes, M. (2016). In-depth neuropharmacokinetic analysis of antipsychotics based on a novel approach to estimate unbound target-site concentration in CNS regions: Link to spatial receptor occupancy. Molecular Psychiatry, 21(11), 1527-1536.
Loscher, W., Potschka, H., Sisodiya, S. M., & Vezzani, A. (2020). Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacological Reviews, 72(3), 606-638.
Lu, J. S., Yang, L., Chen, J., Xiong, F. F., Cai, P., Wang, X. Y., Xiong, B. J., Chen, Z. H., Chen, L., Yang, J., & Yu, C. X. (2023). Basolateral amygdala astrocytes modulate diabetic neuropathic pain and may be a potential therapeutic target for koumine. British Journal of Pharmacology, 180(10), 1408-1428.
MacDonald, A. J., Holmes, F. E., Beall, C., Pickering, A. E., & Ellacott, K. L. J. (2020). Regulation of food intake by astrocytes in the brainstem dorsal vagal complex. GLIA, 68(6), 1241-1254.
Maes, M. E., Colombo, G., Schulz, R., & Siegert, S. (2019). Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neuroscience Letters, 707, 134310.
Malone, J. I., & Hansen, B. C. (2019). Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatric Diabetes, 20(1), 5-9.
Manvich, D. F., Webster, K. A., Foster, S. L., Farrell, M. S., Ritchie, J. C., Porter, J. H., & Weinshenker, D. (2018). The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Scientific Reports, 8(1), 3840.
Marathe, S. V., D'Almeida, P. L., Virmani, G., Bathini, P., & Alberi, L. (2018). Effects of monoamines and antidepressants on astrocyte physiology: Implications for monoamine hypothesis of depression. Journal of Experimental Neuroscience, 12, 1179069518789149.
Mariotti, L., Losi, G., Sessolo, M., Marcon, I., & Carmignoto, G. (2016). The inhibitory neurotransmitter GABA evokes long-lasting Ca(2+) oscillations in cortical astrocytes. GLIA, 64(3), 363-373.
Martin-Fernandez, M., Jamison, S., Robin, L. M., Zhao, Z., Martin, E. D., Aguilar, J., Benneyworth, M. A., Marsicano, G., & Araque, A. (2017). Synapse-specific astrocyte gating of amygdala-related behavior. Nature Neuroscience, 20(11), 1540-1548.
Martorana, F., Brambilla, L., Valori, C. F., Bergamaschi, C., Roncoroni, C., Aronica, E., Volterra, A., Bezzi, P., & Rossi, D. (2012). The BH4 domain of Bcl-X(L) rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. Human Molecular Genetics, 21(4), 826-840.
Mazare, N., Oudart, M., Moulard, J., Cheung, G., Tortuyaux, R., Mailly, P., et al. (2020). Local translation in perisynaptic astrocytic processes is specific and changes after fear conditioning. Cell Reports, 32(8), 108076.
McLarnon, J. G. (2020). Microglial store-operated calcium signaling in health and in Alzheimer's disease. Current Alzheimer Research, 17(12), 1057-1064.
Meier, S. D., Kafitz, K. W., & Rose, C. R. (2008). Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. GLIA, 56(10), 1127-1137.
Mendell, J. R., Al-Zaidy, S., Shell, R., Arnold, W. D., Rodino-Klapac, L. R., Prior, T. W., et al. (2017). Single-dose gene-replacement therapy for spinal muscular atrophy. The New England Journal of Medicine, 377(18), 1713-1722.
Mendes, N. F., Kim, Y. B., Velloso, L. A., & Araújo, E. P. (2018). Hypothalamic microglial activation in obesity: A mini-review. Frontiers in Neuroscience, 12, 846.
Miyamoto, K., Ishikura, K. I., Kume, K., & Ohsawa, M. (2019). Astrocyte-neuron lactate shuttle sensitizes nociceptive transmission in the spinal cord. GLIA, 67(1), 27-36.
Miyazaki, I., Asanuma, M., Diaz-Corrales, F. J., Miyoshi, K., & Ogawa, N. (2004). Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Research, 1029(1), 120-123.
Morelli, M., Carta, A. R., & Jenner, P. (2009). Adenosine A2A receptors and Parkinson's disease. Handbook of Experimental Pharmacology, 193, 589-615.
Mudannayake, J. M., Mouravlev, A., Fong, D. M., & Young, D. (2016). Transcriptional activity of novel ALDH1L1 promoters in the rat brain following AAV vector-mediated gene transfer. Molecular Therapy-Methods & Clinical Development, 3, 16075.
Nagai, J., Rajbhandari, A. K., Gangwani, M. R., Hachisuka, A., Coppola, G., Masmanidis, S. C., Fanselow, M. S., & Khakh, B. S. (2019). Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell, 177(5), 1280-1292.
Nagai, Y., Miyakawa, N., Takuwa, H., Hori, Y., Oyama, K., Ji, B., Takahashi, M., Huang, X. P., Slocum, S. T., DiBerto, J. F., Xiong, Y., Urushihata, T., Hirabayashi, T., Fujimoto, A., Mimura, K., English, J. G., Liu, J., Inoue, K. I., Kumata, K., … Minamimoto, T. (2020). Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nature Neuroscience, 23(9), 1157-1167.
Nam, M. H., Han, K. S., Lee, J., Won, W., Koh, W., Bae, J. Y., Woo, J., Kim, J., Kwong, E., Choi, T. Y., Chun, H., Lee, S. E., Kim, S. B., Park, K. D., Choi, S. Y., Bae, Y. C., & Lee, C. J. (2019). Activation of astrocytic mu-opioid receptor causes conditioned place preference. Cell Reports, 28(5), 1154-1166.
Nasi, M., Bianchini, E., De Biasi, S., Gibellini, L., Neroni, A., Mattioli, M., et al. (2020). Increased plasma levels of mitochondrial DNA and pro-inflammatory cytokines in patients with progressive multiple sclerosis. Journal of Neuroimmunology, 338, 577107.
Nichols, C. D., & Roth, B. L. (2009). Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Frontiers in Molecular Neuroscience, 2, 16.
Niraula, A., Sheridan, J. F., & Godbout, J. P. (2017). Microglia priming with aging and stress. Neuropsychopharmacology, 42(1), 318-333.
Norden, D. M., Muccigrosso, M. M., & Godbout, J. P. (2015). Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology, 96, 29-41.
Nwachukwu, K. N., Evans, W. A., Sides, T. R., Trevisani, C. P., Davis, A., & Marshall, S. A. (2021). Chemogenetic manipulation of astrocytic signaling in the basolateral amygdala reduces binge-like alcohol consumption in male mice. Journal of Neuroscience Research, 99(8), 1957-1972.
Octeau, J. C., Gangwani, M. R., Allam, S. L., Tran, D., Huang, S., Hoang-Trong, T. M., Golshani, P., Rumbell, T. H., Kozloski, J. R., & Khakh, B. S. (2019). Transient, consequential increases in extracellular potassium ions accompany Channelrhodopsin2 excitation. Cell Reports, 27(8), 2249-2261.
Oe, Y., Wang, X., Patriarchi, T., Konno, A., Ozawa, K., Yahagi, K., Hirai, H., Tsuboi, T., Kitaguchi, T., Tian, L., McHugh, T. J., & Hirase, H. (2020). Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nature Communications, 11(1), 471.
Ohsawa, K., Irino, Y., Nakamura, Y., Akazawa, C., Inoue, K., & Kohsaka, S. (2007). Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. GLIA, 55(6), 604-616.
Olivier, P., Fontaine, R. H., Loron, G., Van Steenwinckel, J., Biran, V., Massonneau, V., et al. (2009). Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One, 4(9), e7128.
O'Neill, E., Yssel, J. D., McNamara, C., & Harkin, A. (2020). Pharmacological targeting of β. British Journal of Pharmacology, 177(2), 282-297.
Orellana, J. A., Montero, T. D., & von Bernhardi, R. (2013). Astrocytes inhibit nitric oxide-dependent Ca(2+) dynamics in activated microglia: Involvement of ATP released via pannexin 1 channels. GLIA, 61(12), 2023-2037.
Orihuela, R., McPherson, C. A., & Harry, G. J. (2016). Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology, 173(4), 649-665.
Orr, A. G., Orr, A. L., Li, X. J., Gross, R. E., & Traynelis, S. F. (2009). Adenosine A(2A) receptor mediates microglial process retraction. Nature Neuroscience, 12(7), 872-878.
Ortinski, P. I., Dong, J., Mungenast, A., Yue, C., Takano, H., Watson, D. J., Haydon, P. G., & Coulter, D. A. (2010). Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nature Neuroscience, 13(5), 584-591.
Osman, I., Wang, L., Hu, G., Zheng, Z., & Zhou, J. (2020). GFAP (glial fibrillary acidic protein)-positive progenitor cells contribute to the development of vascular smooth muscle cells and endothelial cells-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(5), 1231-1238.
Ouali Alami, N., Tang, L., Wiesner, D., Commisso, B., Bayer, D., Weishaupt, J., Dupuis, L., Wong, P., Baumann, B., Wirth, T., Boeckers, T. M., Yilmazer-Hanke, D., Ludolph, A., & Roselli, F. (2020). Multiplexed chemogenetics in astrocytes and motoneurons restore blood-spinal cord barrier in ALS. Life Science Alliance, 3(11), e201900571.
Pannell, M., Meier, M. A., Szulzewsky, F., Matyash, V., Endres, M., Kronenberg, G., Prinz, V., Waiczies, S., Wolf, S. A., & Kettenmann, H. (2016). The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer's disease. Brain Structure & Function, 221(2), 1157-1172.
Parkhurst, C. N., Yang, G., Ninan, I., Savas, J. N., Yates, J. R., Lafaille, J. J., et al. (2013). Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 155(7), 1596-1609.
Parusel, S., Yi, M. H., Hunt, C. L., & Wu, L. J. (2023). Chemogenetic and optogenetic manipulations of microglia in chronic pain. Neuroscience Bulletin, 39(3), 368-378.
Peakman, M. C., & Hill, S. J. (1994). Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. British Journal of Pharmacology, 111, 191-198.
Peakman, M. C., & Hill, S. J. (1996). Adenosine A1 receptor-mediated inhibition of cyclic AMP accumulation in type-2 but not type-1 rat astrocytes. European Journal of Pharmacology, 306(1-3), 281-289.
Pearson-Leary, J., Osborne, D. M., & McNay, E. C. (2015). Role of glia in stress-induced enhancement and impairment of memory. Frontiers in Integrative Neuroscience, 9, 63.
Pekny, M., & Pekna, M. (2016). Reactive gliosis in the pathogenesis of CNS diseases. Biochimica et Biophysica Acta, 1862(3), 483-491.
Perea, G., Gomez, R., Mederos, S., Covelo, A., Ballesteros, J. J., Schlosser, L., et al. (2016). Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks. eLife, 5, 5.
Perry, V. H., & Holmes, C. (2014). Microglial priming in neurodegenerative disease. Nature Reviews. Neurology, 10(4), 217-224.
Pestana, F., Edwards-Faret, G., Belgard, T. G., Martirosyan, A., & Holt, M. G. (2020). No longer underappreciated: The emerging concept of astrocyte heterogeneity in neuroscience. Brain Sciences, 10(3), 168.
Phatnani, H., & Maniatis, T. (2015). Astrocytes in neurodegenerative disease. Cold Spring Harbor Perspectives in Biology, 7(6), a020628.
Plata, A., Lebedeva, A., Denisov, P., Nosova, O., Postnikova, T. Y., Pimashkin, A., Brazhe, A., Zaitsev, A. V., Rusakov, D. A., & Semyanov, A. (2018). Astrocytic atrophy following status epilepticus parallels reduced Ca(2+) activity and impaired synaptic plasticity in the rat hippocampus. Frontiers in Molecular Neuroscience, 11, 215.
Pohl, T. T., Jung, O., Di Benedetto, B., Young, L. J., & Bosch, O. J. (2021). Microglia react to partner loss in a sex- and brain site-specific manner in prairie voles. Brain, Behavior, and Immunity, 96, 168-186.
Porter-Stransky, K. A., Centanni, S. W., Karne, S. L., Odil, L. M., Fekir, S., Wong, J. C., Jerome, C., Mitchell, H. A., Escayg, A., Pedersen, N. P., Winder, D. G., Mitrano, D. A., & Weinshenker, D. (2019). Noradrenergic transmission at Alpha1-adrenergic receptors in the ventral periaqueductal gray modulates arousal. Biological Psychiatry, 85(3), 237-247.
Pöyhönen, S., Er, S., Domanskyi, A., & Airavaara, M. (2019). Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Frontiers in Physiology, 10, 486.
Pozzo, E. D., Tremolanti, C., Costa, B., Giacomelli, C., Milenkovic, V. M., Bader, S., Wetzel, C. H., Rupprecht, R., Taliani, S., Settimo, F. D., & Martini, C. (2019). Microglial pro-inflammatory and anti-inflammatory phenotypes are modulated by translocator protein activation. International Journal of Molecular Sciences, 20(18), 4467.
Qiu, J., Yan, Z., Tao, K., Li, Y., Li, J., Dong, Y., et al. (2016). Sinomenine activates astrocytic dopamine D2 receptors and alleviates neuroinflammatory injury via the CRYAB/STAT3 pathway after ischemic stroke in mice. Journal of Neuroinflammation, 13(1), 263.
Rincon, M. Y., de Vin, F., Duqué, S. I., Fripont, S., Castaldo, S. A., Bouhuijzen-Wenger, J., & Holt, M. G. (2018). Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector. Gene Therapy, 25(2), 83-92.
Ronaldson, P. T., & Davis, T. P. (2020). Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. Journal of Cerebral Blood Flow and Metabolism, 40(1 Suppl), S6-S24.
Rosario, A. M., Cruz, P. E., Ceballos-Diaz, C., Strickland, M. R., Siemienski, Z., Pardo, M., Schob, K. L., Li, A., Aslanidi, G. V., Srivastava, A., Golde, T. E., & Chakrabarty, P. (2016). Microglia-specific targeting by novel capsid-modified AAV6 vectors. Molecular Therapy-Methods & Clinical Development, 3, 16026.
Roseboom, P. H., Mueller, S. A. L., Oler, J. A., Fox, A. S., Riedel, M. K., Elam, V. R., Olsen, M. E., Gomez, J. L., Boehm, M. A., DiFilippo, A. H., Christian, B. T., Michaelides, M., & Kalin, N. H. (2021). Evidence in primates supporting the use of chemogenetics for the treatment of human refractory neuropsychiatric disorders. Molecular Therapy, 29(12), 3484-3497.
Roth, B. L. (2016). DREADDs for neuroscientists. Neuron, 89(4), 683-694.
Ruiz-Calvo, A., Maroto, I. B., Bajo-Graneras, R., Chiarlone, A., Gaudioso, A., Ferrero, J. J., et al. (2018). Pathway-specific control of striatal neuron vulnerability by Corticostriatal cannabinoid CB1 receptors. Cerebral Cortex, 28(1), 307-322.
Saika, F., Matsuzaki, S., Kishioka, S., & Kiguchi, N. (2021). Chemogenetic activation of CX3CR1-expressing spinal microglia using Gq-DREADD elicits mechanical allodynia in male mice. Cell, 10(4), 874.
Saika, F., Matsuzaki, S., Kobayashi, D., Ideguchi, Y., Nakamura, T. Y., Kishioka, S., & Kiguchi, N. (2020). Chemogenetic regulation of CX3CR1-expressing microglia using Gi-DREADD exerts sex-dependent anti-allodynic effects in mouse models of neuropathic pain. Frontiers in Pharmacology, 11, 925.
Samaranch, L., Salegio, E. A., San Sebastian, W., Kells, A. P., Foust, K. D., Bringas, J. R., Lamarre, C., Forsayeth, J., Kaspar, B. K., & Bankiewicz, K. S. (2012). Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Human Gene Therapy, 23(4), 382-389.
Sandkuhler, J., & Gruber-Schoffnegger, D. (2012). Hyperalgesia by synaptic long-term potentiation (LTP): An update. Current Opinion in Pharmacology, 12(1), 18-27.
Santello, M., Cali, C., & Bezzi, P. (2012). Gliotransmission and the tripartite synapse. Advances in Experimental Medicine and Biology, 970, 307-331.
Saraiva, J., Nobre, R. J., & Pereira de Almeida, L. (2016). Gene therapy for the CNS using AAVs: The impact of systemic delivery by AAV9. Journal of Controlled Release, 241, 94-109.
Savtchouk, I., & Volterra, A. (2018). Gliotransmission: Beyond black-and-white. The Journal of Neuroscience, 38(1), 14-25.
Schafer, D. P., Lehrman, E. K., & Stevens, B. (2013). The “quad-partite” synapse: Microglia-synapse interactions in the developing and mature CNS. GLIA, 61(1), 24-36.
Schulz, R., Korkut-Demirbaş, M., Venturino, A., Colombo, G., & Siegert, S. (2022). Chimeric GPCRs mimic distinct signaling pathways and modulate microglia responses. Nature Communications, 13(1), 4728.
Scofield, M. D., Boger, H. A., Smith, R. J., Li, H., Haydon, P. G., & Kalivas, P. W. (2015). Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biological Psychiatry, 78(7), 441-451.
Serrano, A., Haddjeri, N., Lacaille, J. C., & Robitaille, R. (2006). GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. The Journal of Neuroscience, 26(20), 5370-5382.
Shao, Y., & McCarthy, K. D. (1995). Receptor-mediated calcium signals in astroglia: Multiple receptors, common stores and all-or-nothing responses. Cell Calcium, 17(3), 187-196.
Sharma, M., Arbabzada, N., & Flood, P. M. (2019). Mechanism underlying β2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. Journal of Neuroimmunology, 332, 37-48.
Shchepinova, M. M., Hanyaloglu, A. C., Frost, G. S., & Tate, E. W. (2020). Chemical biology of noncanonical G protein-coupled receptor signaling: Toward advanced therapeutics. Current Opinion in Chemical Biology, 56, 98-110.
Shideman, C. R., Hu, S., Peterson, P. K., & Thayer, S. A. (2006). CCL5 evokes calcium signals in microglia through a kinase-, phosphoinositide-, and nucleotide-dependent mechanism. Journal of Neuroscience Research, 83(8), 1471-1484.
Shigetomi, E., Bowser, D. N., Sofroniew, M. V., & Khakh, B. S. (2008). Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. The Journal of Neuroscience, 28(26), 6659-6663.
Shinozaki, Y., Shibata, K., Yoshida, K., Shigetomi, E., Gachet, C., Ikenaka, K., Tanaka, K. F., & Koizumi, S. (2017). Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y. Cell Reports, 19(6), 1151-1164.
Shrivastava, A. N., Kowalewski, J. M., Renner, M., Bousset, L., Koulakoff, A., Melki, R., Giaume, C., & Triller, A. (2013). Beta-amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. GLIA, 61(10), 1673-1686.
Siemsen, B. M., Reichel, C. M., Leong, K. C., Garcia-Keller, C., Gipson, C. D., Spencer, S., McFaddin, J. A., Hooker, K. N., Kalivas, P. W., & Scofield, M. D. (2019). Effects of methamphetamine self-administration and extinction on astrocyte structure and function in the nucleus accumbens core. Neuroscience, 406, 528-541.
Simonds, W. F. (1999). G protein regulation of adenylate cyclase. Trends in Pharmacological Sciences, 20(2), 66-73.
Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: Biology and pathology. Acta Neuropathologica, 119(1), 7-35.
Song, L., Lee, C., & Schindler, C. (2011). Deletion of the murine scavenger receptor CD68. Journal of Lipid Research, 52(8), 1542-1550.
Sorg, O., Pellerin, L., Stolz, M., Beggah, S., & Magistretti, P. J. (1995). Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mouse cerebral cortical astrocytes. Neuroscience Letters, 188(2), 109-112.
Spampinato, S. F., Copani, A., Nicoletti, F., Sortino, M. A., & Caraci, F. (2018). Metabotropic glutamate receptors in glial cells: A new potential target for neuroprotection? Frontiers in Molecular Neuroscience, 11, 414.
Spielman, L. J., Gibson, D. L., & Klegeris, A. (2017). Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors. European Journal of Cell Biology, 96(3), 240-253.
Spoto, B., Pisano, A., & Zoccali, C. (2016). Insulin resistance in chronic kidney disease: A systematic review. American Journal of Physiology. Renal Physiology, 311(6), F1087-F1108.
Sternson, S. M., & Roth, B. L. (2014). Chemogenetic tools to interrogate brain functions. Annual Review of Neuroscience, 37, 387-407.
Stoica, L., Ahmed, S. S., Gao, G., & Sena-Esteves, M. (2013). Gene transfer to the CNS using recombinant adeno-associated virus. Current Protocols in Microbiology.
Stoll, G., & Jander, S. (1999). The role of microglia and macrophages in the pathophysiology of the CNS. Progress in Neurobiology, 58(3), 233-247.
Strader, C. D., Gaffney, T., Sugg, E. E., Candelore, M. R., Keys, R., Patchett, A. A., & Dixon, R. A. (1991). Allele-specific activation of genetically engineered receptors. The Journal of Biological Chemistry, 266(1), 5-8.
Subbarao, K. V., & Hertz, L. (1990). Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Research, 536(1-2), 220-226.
Subhramanyam, C. S., Wang, C., Hu, Q., & Dheen, S. T. (2019). Microglia-mediated neuroinflammation in neurodegenerative diseases. Seminars in Cell & Developmental Biology, 94, 112-120.
Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J., & Alberini, C. M. (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 144(5), 810-823.
Sweeney, M. D., Sagare, A. P., & Zlokovic, B. V. (2018). Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews. Neurology, 14(3), 133-150.
Sweger, E. J., Casper, K. B., Scearce-Levie, K., Conklin, B. R., & McCarthy, K. D. (2007). Development of hydrocephalus in mice expressing the G(i)-coupled GPCR Ro1 RASSL receptor in astrocytes. The Journal of Neuroscience, 27(9), 2309-2317.
Tanaka, K. F., Kashima, H., Suzuki, H., Ono, K., & Sawada, M. (2002). Existence of functional beta1- and beta2-adrenergic receptors on microglia. Journal of Neuroscience Research, 70(2), 232-237.
Thonhoff, J. R., Simpson, E. P., & Appel, S. H. (2018). Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis. Current Opinion in Neurology, 31(5), 635-639.
Tian, G. F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N. A., Lou, N., Wang, X., Zielke, H. R., Kang, J., & Nedergaard, M. (2005). An astrocytic basis of epilepsy. Nature Medicine, 11(9), 973-981.
Ulas, J., Satou, T., Ivins, K. J., Kesslak, J. P., Cotman, C. W., & Balazs, R. (2000). Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. GLIA, 30(4), 352-361.
Umpierre, A. D., West, P. J., White, J. A., & Wilcox, K. S. (2019). Conditional Knock-out of mGluR5 from astrocytes during epilepsy development impairs high-frequency glutamate uptake. The Journal of Neuroscience, 39(4), 727-742.
Upright, N. A., & Baxter, M. G. (2020). Effect of chemogenetic actuator drugs on prefrontal cortex-dependent working memory in nonhuman primates. Neuropsychopharmacology, 45(11), 1793-1798.
Vaidyanathan, T. V., Collard, M., Yokoyama, S., Reitman, M. E., & Poskanzer, K. E. (2021). Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. eLife, 10, 10.
Vainchtein, I. D., & Molofsky, A. V. (2020). Astrocytes and microglia: In sickness and in health. Trends in Neurosciences, 43(3), 144-154.
Valori, C. F., Brambilla, L., Martorana, F., & Rossi, D. (2014). The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 71(2), 287-297.
Van Den Herrewegen, Y., Sanderson, T. M., Sahu, S., De Bundel, D., Bortolotto, Z. A., & Smolders, I. (2021). Side-by-side comparison of the effects of Gq- and Gi-DREADD-mediated astrocyte modulation on intracellular calcium dynamics and synaptic plasticity in the hippocampal CA1. Molecular Brain, 14(1), 144.
Vardy, E., Robinson, J. E., Li, C., Olsen, R. H. J., DiBerto, J. F., Giguere, P. M., et al. (2015). A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron, 86(4), 936-946.
Verkhratsky, A., Matteoli, M., Parpura, V., Mothet, J. P., & Zorec, R. (2016). Astrocytes as secretory cells of the central nervous system: Idiosyncrasies of vesicular secretion. The EMBO Journal, 35(3), 239-257.
Verkhratsky, A., & Nedergaard, M. (2018). Physiology of Astroglia. Physiological Reviews, 98(1), 239-389.
Vermeiren, C., Hemptinne, I., Vanhoutte, N., Tilleux, S., Maloteaux, J. M., & Hermans, E. (2006). Loss of metabotropic glutamate receptor-mediated regulation of glutamate transport in chemically activated astrocytes in a rat model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 96(3), 719-731.
Vlasov, K., Van Dort, C. J., & Solt, K. (2018). Optogenetics and Chemogenetics. Methods in Enzymology, 603, 181-196.
Wacker, D., Stevens, R. C., & Roth, B. L. (2017). How ligands illuminate GPCR molecular pharmacology. Cell, 170(3), 414-427.
Walker, M. C., & Kullmann, D. M. (2020). Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology, 168, 107751.
Wang, D., Tai, P. W. L., & Gao, G. (2019). Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews. Drug Discovery, 18(5), 358-378.
Wang, F., Smith, N. A., Xu, Q., Goldman, S., Peng, W., Huang, J. H., Takano, T., & Nedergaard, M. (2013). Photolysis of caged Ca2+ but not receptor-mediated Ca2+ signaling triggers astrocytic glutamate release. The Journal of Neuroscience, 33(44), 17404-17412.
Webster, C. M., Hokari, M., McManus, A., Tang, X. N., Ma, H., Kacimi, R., & Yenari, M. A. (2013). Microglial P2Y12 deficiency/inhibition protects against brain ischemia. PLoS One, 8(8), e70927.
Wen, R. X., Shen, H., Huang, S. X., Wang, L. P., Li, Z. W., Peng, P., Mamtilahun, M., Tang, Y. H., Shen, F. X., Tian, H. L., Yang, G. Y., & Zhang, Z. J. (2020). P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis. CNS Neuroscience & Therapeutics, 26(4), 416-429.
Westkaemper, R. B., & Glennon, R. A. (2002). Application of ligand SAR, receptor modeling and receptor mutagenesis to the discovery and development of a new class of 5-HT(2A) ligands. Current Topics in Medicinal Chemistry, 2(6), 575-598.
Weston, M., Kaserer, T., Wu, A., Mouravlev, A., Carpenter, J. C., Snowball, A., Knauss, S., von Schimmelmann, M., During, M. J., Lignani, G., Schorge, S., Young, D., Kullmann, D. M., & Lieb, A. (2019). Olanzapine: A potent agonist at the hM4D(Gi) DREADD amenable to clinical translation of chemogenetics. Science Advances, 5(4), eaaw1567.
Wolf, S. A., Boddeke, H. W., & Kettenmann, H. (2017). Microglia in physiology and disease. Annual Review of Physiology, 79, 619-643.
Wolosker, H., & Balu, D. T. (2020). D-serine as the gatekeeper of NMDA receptor activity: Implications for the pharmacologic management of anxiety disorders. Translational Psychiatry, 10(1), 184.
Woods, M. D., Freshney, R. I., Ball, S. G., & Vaughan, P. F. (1989). Regulation of cyclic AMP formation in cultures of human foetal astrocytes by beta 2-adrenergic and adenosine receptors. Journal of Neurochemistry, 53(3), 864-869.
Xie, A. X., Lee, J. J., & McCarthy, K. D. (2017). Ganglionic GFAP (+) glial Gq-GPCR signaling enhances heart functions in vivo. JCI Insight., 2(2), e90565.
Xie, A. X., Madayag, A., Minton, S. K., McCarthy, K. D., & Malykhina, A. P. (2020). Sensory satellite glial Gq-GPCR activation alleviates inflammatory pain via peripheral adenosine 1 receptor activation. Scientific Reports, 10(1), 14181.
Xie, A. X., Petravicz, J., & McCarthy, K. D. (2015). Molecular approaches for manipulating astrocytic signaling in vivo. Frontiers in Cellular Neuroscience, 9, 144.
Xu, J., Song, D., Bai, Q., Cai, L., Hertz, L., & Peng, L. (2014). Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA. Neurochemical Research, 39(4), 661-667.
Xu, T., & Pandey, S. C. (2000). Cellular localization of serotonin(2A) (5HT(2A)) receptors in the rat brain. Brain Research Bulletin, 51(6), 499-505.
Xu, Y., Hu, W., Liu, Y., Xu, P., Li, Z., Wu, R., Shi, X., & Tang, Y. (2016). P2Y6 receptor-mediated microglial phagocytosis in radiation-induced brain injury. Molecular Neurobiology, 53(6), 3552-3564.
Yang, J., Ruchti, E., Petit, J. M., Jourdain, P., Grenningloh, G., Allaman, I., & Magistretti, P. J. (2014). Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12228-12233.
Yang, L., Lu, J., Guo, J., Chen, J., Xiong, F., Wang, X., Chen, L., & Yu, C. (2022). Ventrolateral periaqueductal gray astrocytes regulate nociceptive sensation and emotional motivation in diabetic neuropathic pain. The Journal of Neuroscience, 42, 8184-8199.
Yang, L., Qi, Y., & Yang, Y. (2015). Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Reports, 11(5), 798-807.
Yang, S., Qin, C., Hu, Z. W., Zhou, L. Q., Yu, H. H., Chen, M., Bosco, D. B., Wang, W., Wu, L. J., & Tian, D. S. (2021). Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiology of Disease, 152, 105290.
Yang, X., Lou, Y., Liu, G., Wang, X., Qian, Y., Ding, J., Chen, S., & Xiao, Q. (2017). Microglia P2Y6 receptor is related to Parkinson's disease through neuroinflammatory process. Journal of Neuroinflammation, 14(1), 38.
Yang, Z. J., Wang, B., Kwansa, H., Heitmiller, K. D., Hong, G., Carter, E. L., Jamrogowicz, J. L., Larson, A. C., Martin, L. J., & Koehler, R. C. (2013). Adenosine A2A receptor contributes to ischemic brain damage in newborn piglet. Journal of Cerebral Blood Flow and Metabolism, 33(10), 1612-1620.
Yi, M. H., Liu, Y. U., Liu, K., Chen, T., Bosco, D. B., Zheng, J., et al. (2020). Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain, Behavior, and Immunity, 92, 78-89.
Yu, X., Nagai, J., & Khakh, B. S. (2020b). Improved tools to study astrocytes. Nature Reviews. Neuroscience, 21(3), 121-138.
Yu, X., Nagai, J., Marti-Solano, M., Soto, J. S., Coppola, G., Babu, M. M., & Khakh, B. S. (2020a). Context-specific striatal astrocyte molecular responses are phenotypically exploitable. Neuron, 108, 1146-1162.e10.
Yu, X., Taylor, A. M. W., Nagai, J., Golshani, P., Evans, C. J., Coppola, G., & Khakh, B. S. (2018). Reducing astrocyte calcium signaling In vivo alters striatal microcircuits and causes repetitive behavior. Neuron, 99(6), 1170-1187.
Zant, J. C., Kim, T., Prokai, L., Szarka, S., McNally, J., McKenna, J. T., et al. (2016). Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: An opto-dialysis study. The Journal of Neuroscience, 36(6), 2057-2067.
Zeis, T., Allaman, I., Gentner, M., Schroder, K., Tschopp, J., Magistretti, P. J., & Schaeren-Wiemers, N. (2015). Metabolic gene expression changes in astrocytes in multiple sclerosis cerebral cortex are indicative of immune-mediated signaling. Brain, Behavior, and Immunity, 48, 313-325.
Zhang, D., Hu, X., Qian, L., Wilson, B., Lee, C., Flood, P., Langenbach, R., & Hong, J. S. (2009). Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro. Toxicology and Applied Pharmacology, 238(1), 64-70.
Zhang, J., He, H., Qiao, Y., Zhou, T., Yi, S., Zhang, L., et al. (2020). Priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. GLIA, 68(12), 2674-2692.
Zhang, L., McLarnon, J. G., Goghari, V., Lee, Y. B., Kim, S. U., & Krieger, C. (1998). Cholinergic agonists increase intracellular Ca2+ in cultured human microglia. Neuroscience Letters, 255(1), 33-36.
Zhang, M., Cheng, X., Dang, R., Zhang, W., Zhang, J., & Yao, Z. (2018). Lactate deficit in an Alzheimer disease mouse model: The relationship with neuronal damage. Journal of Neuropathology and Experimental Neurology, 77(12), 1163-1176.
Zhang, X., Alnafisah, R. S., Hamoud, A. A., Shukla, R., Wen, Z., McCullumsmith, R. E., & O'Donovan, S. M. (2021). Role of astrocytes in major neuropsychiatric disorders. Neurochemical Research, 46(10), 2715-2730.
Zhang, X., Song, D., Gu, L., Ren, Y., Verkhratsky, A., & Peng, L. (2015). Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson's disease. Frontiers in Cellular Neuroscience, 9, 388.
Zhang, Y., & Barres, B. A. (2010). Astrocyte heterogeneity: An underappreciated topic in neurobiology. Current Opinion in Neurobiology, 20(5), 588-594.
Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., Deng, S., Liddelow, S. A., Zhang, C., Daneman, R., Maniatis, T., Barres, B. A., & Wu, J. Q. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience, 34(36), 11929-11947.
Zhang, Z., Ma, Z., Zou, W., Guo, H., Liu, M., Ma, Y., & Zhang, L. (2019). The appropriate marker for astrocytes: Comparing the distribution and expression of three astrocytic markers in different mouse cerebral regions. BioMed Research International, 2019, 9605265.
Zhang, Z. J., Jiang, B. C., & Gao, Y. J. (2017). Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cellular and Molecular Life Sciences, 74(18), 3275-3291.
Zhao, Y., & Xu, H. (2022). Microglial lactate metabolism as a potential therapeutic target for Alzheimer's disease. Molecular Neurodegeneration, 17(1), 36.
Zhou, Z., Ikegaya, Y., & Koyama, R. (2019). The astrocytic cAMP pathway in health and disease. International Journal of Molecular Sciences, 20(3), 779.
Zhuo, M., Wu, G., & Wu, L. J. (2011). Neuronal and microglial mechanisms of neuropathic pain. Molecular Brain, 4, 31.
Zotova, E., Bharambe, V., Cheaveau, M., Morgan, W., Holmes, C., Harris, S., Neal, J. W., Love, S., Nicoll, J. A. R., & Boche, D. (2013). Inflammatory components in human Alzheimer's disease and after active amyloid-β42 immunization. Brain, 136(Pt 9), 2677-2696.
Zou, J., Walter, T. J., Barnett, A., Rohlman, A., Crews, F. T., & Coleman, L. G. (2022). Ethanol induces secretion of proinflammatory extracellular vesicles that inhibit adult hippocampal neurogenesis through G9a/GLP-epigenetic signaling. Frontiers in Immunology, 13, 866073.
Zwirner, J., Lier, J., Franke, H., Hammer, N., Matschke, J., Trautz, F., Tse, R., & Ondruschka, B. (2021). GFAP positivity in neurons following traumatic brain injuries. International Journal of Legal Medicine, 135(6), 2323-2333.

Auteurs

Jo Bossuyt (J)

Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Yana Van Den Herrewegen (Y)

Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Liam Nestor (L)

Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

An Buckinx (A)

Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Dimitri De Bundel (D)

Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Ilse Smolders (I)

Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Articles similaires

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Animals Lung India Sheep Transcriptome
West Nile Fever Animals West Nile virus Humans Enteric Nervous System

Calcineurin inhibition enhances

Priyanka Das, Alejandro Aballay, Jogender Singh
1.00
Animals Caenorhabditis elegans Longevity Caenorhabditis elegans Proteins Calcineurin

Classifications MeSH