Ångström-resolution fluorescence microscopy.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
05 2023
Historique:
received: 21 07 2022
accepted: 07 03 2023
medline: 26 5 2023
pubmed: 25 5 2023
entrez: 24 5 2023
Statut: ppublish

Résumé

Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches

Identifiants

pubmed: 37225882
doi: 10.1038/s41586-023-05925-9
pii: 10.1038/s41586-023-05925-9
pmc: PMC10208979
doi:

Substances chimiques

DNA 9007-49-2
Antigens, CD20 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

711-716

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023. The Author(s).

Références

Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
pubmed: 19844443 doi: 10.1364/OL.19.000780
Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239 (1995).
pubmed: 19859146 doi: 10.1364/OL.20.000237
Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).
pubmed: 10899992 pmcid: 26924 doi: 10.1073/pnas.97.15.8206
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
pubmed: 16902090 doi: 10.1126/science.1127344
Rust, M. J., Bates, M. & Zhuang, X.Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).
pubmed: 16896339 pmcid: 2700296 doi: 10.1038/nmeth929
Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).
pubmed: 17142314 pmcid: 1748151 doi: 10.1073/pnas.0609643104
Dai, M., Jungmann, R. & Yin, P. Optical imaging of individual biomolecules in densely packed clusters. Nat. Nanotechnol. 11, 798–807 (2016).
pubmed: 27376244 pmcid: 5014615 doi: 10.1038/nnano.2016.95
Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).
pubmed: 28008086 doi: 10.1126/science.aak9913
Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).
pubmed: 28518172 doi: 10.1038/nprot.2017.024
Reymond, L. et al. SIMPLE: structured illumination based point localization estimator with enhanced precision. Opt. Express 27, 24578–24590 (2019).
pubmed: 31510345 doi: 10.1364/OE.27.024578
Gu, L. et al. Molecular resolution imaging by repetitive optical selective exposure. Nat. Methods 16, 1114–1118 (2019).
pubmed: 31501551 doi: 10.1038/s41592-019-0544-2
Cnossen, J. et al. Localization microscopy at doubled precision with patterned illumination. Nat. Methods 17, 59–63 (2020).
pubmed: 31819263 doi: 10.1038/s41592-019-0657-7
Weber, M. et al. MINSTED fluorescence localization and nanoscopy. Nat. Photonics 15, 361–366 (2021).
pubmed: 33953795 pmcid: 7610723 doi: 10.1038/s41566-021-00774-2
Masullo, L. A. et al. An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. Light Sci. Appl. 11, 199 (2022).
pubmed: 35773265 pmcid: 9247048 doi: 10.1038/s41377-022-00896-4
Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers https://doi.org/10.1038/s43586-021-00038-x (2021).
Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010).
pubmed: 20364147 pmcid: 3127582 doi: 10.1038/nmeth.1447
Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).
pubmed: 24487583 pmcid: 4153392 doi: 10.1038/nmeth.2835
Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).
pubmed: 20957983 doi: 10.1021/nl103427w
Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
pubmed: 16541064 doi: 10.1038/nature04586
Eklund, A. S., Comberlato, A., Parish, I. A., Jungmann, R. & Bastings, M. M. C. Quantification of strand accessibility in biostable DNA origami with single-staple resolution. ACS Nano 15, 17668–17677 (2021).
pubmed: 34613711 pmcid: 8613912 doi: 10.1021/acsnano.1c05540
Beck, M. & Hurt, E. The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18, 73–89 (2017).
pubmed: 27999437 doi: 10.1038/nrm.2016.147
Schuller, A. P. et al. The cellular environment shapes the nuclear pore complex architecture. Nature 598, 667–671 (2021).
pubmed: 34646014 pmcid: 8550940 doi: 10.1038/s41586-021-03985-3
Loschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012).
pubmed: 22389396 doi: 10.1242/jcs.098822
Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).
pubmed: 23845946 doi: 10.1126/science.1240672
Heydarian, H. et al. 3D particle averaging and detection of macromolecular symmetry in localization microscopy. Nat. Commun. 12, 2847 (2021).
pubmed: 33990554 pmcid: 8121824 doi: 10.1038/s41467-021-22006-5
Wang, W., Heydarian, H., Huijben, T., Stallinga, S. & Rieger, B. Joint registration of multiple point clouds for fast particle fusion in localization microscopy. Bioinformatics 38, 3281–3287 (2022).
pubmed: 35552632 pmcid: 9191212 doi: 10.1093/bioinformatics/btac320
Gwosch, K. C. et al. Reply to: Assessment of 3D MINFLUX data for quantitative structural biology in cells. Nat. Methods 20, 52–54 (2023).
pubmed: 36522499 doi: 10.1038/s41592-022-01695-w
Weber, M. et al. MINSTED nanoscopy enters the Angstrom localization range. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01519-4 (2022).
doi: 10.1038/s41587-022-01519-4 pubmed: 36510008 pmcid: 10110459
Agasti, S. S. et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem. Sci. 8, 3080–3091 (2017).
pubmed: 28451377 pmcid: 5380918 doi: 10.1039/C6SC05420J
Wu, Y. L. et al. Maximum-likelihood model fitting for quantitative analysis of SMLM data. Nat. Methods 20, 139–148 (2023).
pubmed: 36522500 doi: 10.1038/s41592-022-01676-z
Drew, H. R. et al. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl Acad. Sci. USA 78, 2179–2183 (1981).
pubmed: 6941276 pmcid: 319307 doi: 10.1073/pnas.78.4.2179
Strauss, S. & Jungmann, R. Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat. Methods 17, 789–791 (2020).
pubmed: 32601424 pmcid: 7610413 doi: 10.1038/s41592-020-0869-x
Helmerich, D. A. et al. Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier. Nat. Methods 19, 986–994 (2022).
pubmed: 35915194 pmcid: 9349044 doi: 10.1038/s41592-022-01548-6
Pavlasova, G. & Mraz, M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica 105, 1494–1506 (2020).
pubmed: 32482755 pmcid: 7271567 doi: 10.3324/haematol.2019.243543
Glennie, M. J., French, R. R., Cragg, M. S. & Taylor, R. P. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 44, 3823–3837 (2007).
pubmed: 17768100 doi: 10.1016/j.molimm.2007.06.151
Pierpont, T. M., Limper, C. B. & Richards, K. L. Past, present, and future of rituximab—the world’s first oncology monoclonal antibody therapy. Front. Oncol. 8, 163 (2018).
pubmed: 29915719 pmcid: 5994406 doi: 10.3389/fonc.2018.00163
Rouge, L. et al. Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science 367, 1224–1230 (2020).
pubmed: 32079680 doi: 10.1126/science.aaz9356
Kumar, A., Planchais, C., Fronzes, R., Mouquet, H. & Reyes, N. Binding mechanisms of therapeutic antibodies to human CD20. Science 369, 793–799 (2020).
pubmed: 32792392 doi: 10.1126/science.abb8008
Beliu, G. et al. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun. Biol. 2, 261 (2019).
pubmed: 31341960 pmcid: 6642216 doi: 10.1038/s42003-019-0518-z
Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).
pubmed: 19531737 pmcid: 2731887 doi: 10.1093/nar/gkp436
Edelstein, A. D. et al. Advanced methods of microscope control using muManager software. J. Biol. Methods 1, e10 (2014).
pubmed: 25606571 doi: 10.14440/jbm.2014.36
Wade, O. K. et al. 124-Color super-resolution imaging by engineering DNA-PAINT blinking kinetics. Nano Lett. 19, 2641–2646 (2019).
pubmed: 30864449 pmcid: 6463241 doi: 10.1021/acs.nanolett.9b00508
Ries, J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods 17, 870–872 (2020).
pubmed: 32814874 doi: 10.1038/s41592-020-0938-1

Auteurs

Susanne C M Reinhardt (SCM)

Max Planck Institute of Biochemistry, Planegg, Germany.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.

Luciano A Masullo (LA)

Max Planck Institute of Biochemistry, Planegg, Germany.

Isabelle Baudrexel (I)

Max Planck Institute of Biochemistry, Planegg, Germany.
Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany.

Philipp R Steen (PR)

Max Planck Institute of Biochemistry, Planegg, Germany.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.

Rafal Kowalewski (R)

Max Planck Institute of Biochemistry, Planegg, Germany.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.

Alexandra S Eklund (AS)

Max Planck Institute of Biochemistry, Planegg, Germany.
Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany.

Sebastian Strauss (S)

Max Planck Institute of Biochemistry, Planegg, Germany.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.

Eduard M Unterauer (EM)

Max Planck Institute of Biochemistry, Planegg, Germany.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.

Thomas Schlichthaerle (T)

Max Planck Institute of Biochemistry, Planegg, Germany.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.

Maximilian T Strauss (MT)

Max Planck Institute of Biochemistry, Planegg, Germany.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.

Christian Klein (C)

Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany.
Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland.

Ralf Jungmann (R)

Max Planck Institute of Biochemistry, Planegg, Germany. jungmann@biochem.mpg.de.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany. jungmann@biochem.mpg.de.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans
Animals Humans Nickel Mice Immunotherapy
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
Humans Kidney Transplantation Aged Female Antibodies, Monoclonal, Humanized

Classifications MeSH