Ångström-resolution fluorescence microscopy.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
21
07
2022
accepted:
07
03
2023
medline:
26
5
2023
pubmed:
25
5
2023
entrez:
24
5
2023
Statut:
ppublish
Résumé
Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches
Identifiants
pubmed: 37225882
doi: 10.1038/s41586-023-05925-9
pii: 10.1038/s41586-023-05925-9
pmc: PMC10208979
doi:
Substances chimiques
DNA
9007-49-2
Antigens, CD20
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
711-716Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s).
Références
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
pubmed: 19844443
doi: 10.1364/OL.19.000780
Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239 (1995).
pubmed: 19859146
doi: 10.1364/OL.20.000237
Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).
pubmed: 10899992
pmcid: 26924
doi: 10.1073/pnas.97.15.8206
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
pubmed: 16902090
doi: 10.1126/science.1127344
Rust, M. J., Bates, M. & Zhuang, X.Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).
pubmed: 16896339
pmcid: 2700296
doi: 10.1038/nmeth929
Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).
pubmed: 17142314
pmcid: 1748151
doi: 10.1073/pnas.0609643104
Dai, M., Jungmann, R. & Yin, P. Optical imaging of individual biomolecules in densely packed clusters. Nat. Nanotechnol. 11, 798–807 (2016).
pubmed: 27376244
pmcid: 5014615
doi: 10.1038/nnano.2016.95
Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).
pubmed: 28008086
doi: 10.1126/science.aak9913
Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).
pubmed: 28518172
doi: 10.1038/nprot.2017.024
Reymond, L. et al. SIMPLE: structured illumination based point localization estimator with enhanced precision. Opt. Express 27, 24578–24590 (2019).
pubmed: 31510345
doi: 10.1364/OE.27.024578
Gu, L. et al. Molecular resolution imaging by repetitive optical selective exposure. Nat. Methods 16, 1114–1118 (2019).
pubmed: 31501551
doi: 10.1038/s41592-019-0544-2
Cnossen, J. et al. Localization microscopy at doubled precision with patterned illumination. Nat. Methods 17, 59–63 (2020).
pubmed: 31819263
doi: 10.1038/s41592-019-0657-7
Weber, M. et al. MINSTED fluorescence localization and nanoscopy. Nat. Photonics 15, 361–366 (2021).
pubmed: 33953795
pmcid: 7610723
doi: 10.1038/s41566-021-00774-2
Masullo, L. A. et al. An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. Light Sci. Appl. 11, 199 (2022).
pubmed: 35773265
pmcid: 9247048
doi: 10.1038/s41377-022-00896-4
Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers https://doi.org/10.1038/s43586-021-00038-x (2021).
Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010).
pubmed: 20364147
pmcid: 3127582
doi: 10.1038/nmeth.1447
Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).
pubmed: 24487583
pmcid: 4153392
doi: 10.1038/nmeth.2835
Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).
pubmed: 20957983
doi: 10.1021/nl103427w
Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
pubmed: 16541064
doi: 10.1038/nature04586
Eklund, A. S., Comberlato, A., Parish, I. A., Jungmann, R. & Bastings, M. M. C. Quantification of strand accessibility in biostable DNA origami with single-staple resolution. ACS Nano 15, 17668–17677 (2021).
pubmed: 34613711
pmcid: 8613912
doi: 10.1021/acsnano.1c05540
Beck, M. & Hurt, E. The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18, 73–89 (2017).
pubmed: 27999437
doi: 10.1038/nrm.2016.147
Schuller, A. P. et al. The cellular environment shapes the nuclear pore complex architecture. Nature 598, 667–671 (2021).
pubmed: 34646014
pmcid: 8550940
doi: 10.1038/s41586-021-03985-3
Loschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012).
pubmed: 22389396
doi: 10.1242/jcs.098822
Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).
pubmed: 23845946
doi: 10.1126/science.1240672
Heydarian, H. et al. 3D particle averaging and detection of macromolecular symmetry in localization microscopy. Nat. Commun. 12, 2847 (2021).
pubmed: 33990554
pmcid: 8121824
doi: 10.1038/s41467-021-22006-5
Wang, W., Heydarian, H., Huijben, T., Stallinga, S. & Rieger, B. Joint registration of multiple point clouds for fast particle fusion in localization microscopy. Bioinformatics 38, 3281–3287 (2022).
pubmed: 35552632
pmcid: 9191212
doi: 10.1093/bioinformatics/btac320
Gwosch, K. C. et al. Reply to: Assessment of 3D MINFLUX data for quantitative structural biology in cells. Nat. Methods 20, 52–54 (2023).
pubmed: 36522499
doi: 10.1038/s41592-022-01695-w
Weber, M. et al. MINSTED nanoscopy enters the Angstrom localization range. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01519-4 (2022).
doi: 10.1038/s41587-022-01519-4
pubmed: 36510008
pmcid: 10110459
Agasti, S. S. et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem. Sci. 8, 3080–3091 (2017).
pubmed: 28451377
pmcid: 5380918
doi: 10.1039/C6SC05420J
Wu, Y. L. et al. Maximum-likelihood model fitting for quantitative analysis of SMLM data. Nat. Methods 20, 139–148 (2023).
pubmed: 36522500
doi: 10.1038/s41592-022-01676-z
Drew, H. R. et al. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl Acad. Sci. USA 78, 2179–2183 (1981).
pubmed: 6941276
pmcid: 319307
doi: 10.1073/pnas.78.4.2179
Strauss, S. & Jungmann, R. Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat. Methods 17, 789–791 (2020).
pubmed: 32601424
pmcid: 7610413
doi: 10.1038/s41592-020-0869-x
Helmerich, D. A. et al. Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier. Nat. Methods 19, 986–994 (2022).
pubmed: 35915194
pmcid: 9349044
doi: 10.1038/s41592-022-01548-6
Pavlasova, G. & Mraz, M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica 105, 1494–1506 (2020).
pubmed: 32482755
pmcid: 7271567
doi: 10.3324/haematol.2019.243543
Glennie, M. J., French, R. R., Cragg, M. S. & Taylor, R. P. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 44, 3823–3837 (2007).
pubmed: 17768100
doi: 10.1016/j.molimm.2007.06.151
Pierpont, T. M., Limper, C. B. & Richards, K. L. Past, present, and future of rituximab—the world’s first oncology monoclonal antibody therapy. Front. Oncol. 8, 163 (2018).
pubmed: 29915719
pmcid: 5994406
doi: 10.3389/fonc.2018.00163
Rouge, L. et al. Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science 367, 1224–1230 (2020).
pubmed: 32079680
doi: 10.1126/science.aaz9356
Kumar, A., Planchais, C., Fronzes, R., Mouquet, H. & Reyes, N. Binding mechanisms of therapeutic antibodies to human CD20. Science 369, 793–799 (2020).
pubmed: 32792392
doi: 10.1126/science.abb8008
Beliu, G. et al. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun. Biol. 2, 261 (2019).
pubmed: 31341960
pmcid: 6642216
doi: 10.1038/s42003-019-0518-z
Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).
pubmed: 19531737
pmcid: 2731887
doi: 10.1093/nar/gkp436
Edelstein, A. D. et al. Advanced methods of microscope control using muManager software. J. Biol. Methods 1, e10 (2014).
pubmed: 25606571
doi: 10.14440/jbm.2014.36
Wade, O. K. et al. 124-Color super-resolution imaging by engineering DNA-PAINT blinking kinetics. Nano Lett. 19, 2641–2646 (2019).
pubmed: 30864449
pmcid: 6463241
doi: 10.1021/acs.nanolett.9b00508
Ries, J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods 17, 870–872 (2020).
pubmed: 32814874
doi: 10.1038/s41592-020-0938-1