Molecular functions of RNA helicases during ribosomal subunit assembly.


Journal

Biological chemistry
ISSN: 1437-4315
Titre abrégé: Biol Chem
Pays: Germany
ID NLM: 9700112

Informations de publication

Date de publication:
26 07 2023
Historique:
received: 14 02 2023
accepted: 09 05 2023
medline: 8 9 2023
pubmed: 26 5 2023
entrez: 26 5 2023
Statut: epublish

Résumé

During their biogenesis, the ribosomal subunits undergo numerous structural and compositional changes to achieve their final architecture. RNA helicases are a key driving force of such remodelling events but deciphering their particular functions has long been challenging due to lack of knowledge of their molecular functions and RNA substrates. Advances in the biochemical characterisation of RNA helicase activities together with new insights into RNA helicase binding sites on pre-ribosomes and structural snapshots of pre-ribosomal complexes containing RNA helicases now open the door to a deeper understanding of precisely how different RNA helicases contribute to ribosomal subunit maturation.

Identifiants

pubmed: 37233600
pii: hsz-2023-0135
doi: 10.1515/hsz-2023-0135
doi:

Substances chimiques

RNA Helicases EC 3.6.4.13
RNA 63231-63-0
RNA, Ribosomal 0
Saccharomyces cerevisiae Proteins 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

781-789

Informations de copyright

© 2023 the author(s), published by De Gruyter, Berlin/Boston.

Références

Aquino, G.R.R., Hackert, P., Krogh, N., Pan, K.T., Jaafar, M., Henras, A.K., Nielsen, H., Urlaub, H., Bohnsack, K.E., and Bohnsack, M.T. (2021a). The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly. Nat. Commun. 12: 6152, https://doi.org/10.1038/s41467-021-26208-9 .
doi: 10.1038/s41467-021-26208-9
Aquino, G.R.R., Krogh, N., Hackert, P., Martin, R., Gallesio, J.D., van Nues, R.W., Schneider, C., Watkins, N.J., Nielsen, H., Bohnsack, K.E., et al.. (2021b). RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2′- O -methylation. Nucleic Acids Res. 49: 4066–4084, https://doi.org/10.1093/nar/gkab159 .
doi: 10.1093/nar/gkab159
Bohnsack, K.E. and Bohnsack, M.T. (2019). Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J. 38: e100278, https://doi.org/10.15252/embj.2018100278 .
doi: 10.15252/embj.2018100278
Bohnsack, K.E., Ficner, R., Bohnsack, M.T., and Jonas, S. (2021). Regulation of DEAH-box RNA helicases by G-patch proteins. Biol. Chem. 402: 561–579, https://doi.org/10.1515/hsz-2020-0338 .
doi: 10.1515/hsz-2020-0338
Bohnsack, K.E., Henras, A.K., Nielsen, H., and Bohnsack, M.T. (2022a). Making ends meet: a universal driver of large ribosomal subunit biogenesis. Trends Biochem. Sci. 48: 213–215 https://doi.org/10.1016/j.tibs.2022.09.003 .
doi: 10.1016/j.tibs.2022.09.003
Bohnsack, K.E., Kanwal, N., and Bohnsack, M.T. (2022b). Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network. Nucleic Acids Res. 50: 9012–9022, https://doi.org/10.1093/nar/gkac687 .
doi: 10.1093/nar/gkac687
Bohnsack, M.T., Kos, M., and Tollervey, D. (2008). Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase. EMBO Rep. 9: 1230–1236, https://doi.org/10.1038/embor.2008.184 .
doi: 10.1038/embor.2008.184
Bohnsack, M.T., Martin, R., Granneman, S., Ruprecht, M., Schleiff, E., and Tollervey, D. (2009). Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol. Cell 36: 583–592, https://doi.org/10.1016/j.molcel.2009.09.039 .
doi: 10.1016/j.molcel.2009.09.039
Bohnsack, M.T., Tollervey, D., and Granneman, S. (2012). Identification of RNA helicase target sites by UV cross-linking and analysis of cDNA. In: Methods in enzymology . Elsevier, Amsterdam, pp. 275–288.
Bourgeois, C.F., Mortreux, F., and Auboeuf, D. (2016). The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat. Rev. Mol. Cell Biol. 17: 426–438, https://doi.org/10.1038/nrm.2016.50 .
doi: 10.1038/nrm.2016.50
Brüning, L., Hackert, P., Martin, R., Gallesio, J.D., Aquino, G.R.R., Urlaub, H., Sloan, K.E., and Bohnsack, M.T. (2018). RNA helicases mediate structural transitions and compositional changes in pre-ribosomal complexes. Nat. Commun. 9: 5383, https://doi.org/10.1038/s41467-018-07783-w .
doi: 10.1038/s41467-018-07783-w
Chen, Y.-L., Capeyrou, R., Humbert, O., Mouffok, S., Kadri, Y.A., Lebaron, S., Henras, A.K., and Henry, Y. (2014). The telomerase inhibitor Gno1p/PINX1 activates the helicase Prp43p during ribosome biogenesis. Nucleic Acids Res. 42: 7330–7345, https://doi.org/10.1093/nar/gku357 .
doi: 10.1093/nar/gku357
Cheng, J., Lau, B., La Venuta, G., Ameismeier, M., Berninghausen, O., Hurt, E., and Beckmann, R. (2020). 90S pre-ribosome transformation into the primordial 40S subunit. Science 369: 1470–1476, https://doi.org/10.1126/science.abb4119 .
doi: 10.1126/science.abb4119
Cruz, V.E., Sekulski, K., Peddada, N., Sailer, C., Balasubramanian, S., Weirich, C.S., Stengel, F., and Erzberger, J.P. (2022). Sequence-specific remodeling of a topologically complex RNP substrate by Spb4. Nat. Struct. Mol. Biol. 29: 1228–1238, https://doi.org/10.1038/s41594-022-00874-9 .
doi: 10.1038/s41594-022-00874-9
Dembowski, J.A., Kuo, B., and Woolford, J.L. (2013). Has1 regulates consecutive maturation and processing steps for assembly of 60S ribosomal subunits. Nucleic Acids Res. 41: 7889–7904, https://doi.org/10.1093/nar/gkt545 .
doi: 10.1093/nar/gkt545
Du, Y., An, W., Zhu, X., Sun, Q., Qi, J., and Ye, K. (2020). Cryo-EM structure of 90S small ribosomal subunit precursors in transition states. Science 369: 1477–1481, https://doi.org/10.1126/science.aba9690 .
doi: 10.1126/science.aba9690
Enders, M., Ficner, R., and Adio, S. (2022). Regulation of the DEAH/RHA helicase Prp43 by the G-patch factor Pfa1. Proc. Natl. Acad. Sci. U.S.A. 119: e2203567119, https://doi.org/10.1073/pnas.2203567119 .
doi: 10.1073/pnas.2203567119
Garcia, I., Albring, M.J., and Uhlenbeck, O.C. (2012). Duplex destabilization by four ribosomal DEAD-box proteins. Biochemistry 51: 10109–10118, https://doi.org/10.1021/bi301172s .
doi: 10.1021/bi301172s
Gnanasundram, S.V., Kos-Braun, I.C., and Koš, M. (2019). At least two molecules of the RNA helicase Has1 are simultaneously present in pre-ribosomes during ribosome biogenesis. Nucleic Acids Res. 47: 10852–10864, https://doi.org/10.1093/nar/gkz767 .
doi: 10.1093/nar/gkz767
Granneman, S., Kudla, G., Petfalski, E., and Tollervey, D. (2009). Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc. Natl. Acad. Sci. U.S.A. 106: 9613–9618, https://doi.org/10.1073/pnas.0901997106 .
doi: 10.1073/pnas.0901997106
Halls, C., Mohr, S., Del, Campo, M., Yang, Q., Jankowsky, E., and Lambowitz, A.M. (2007). Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and-independent mechanisms, and general RNA chaperone activity. J. Mol. Biol. 365: 835–855, https://doi.org/10.1016/j.jmb.2006.09.083 .
doi: 10.1016/j.jmb.2006.09.083
Hamann, F., Enders, M., and Ficner, R. (2019). Structural basis for RNA translocation by DEAH-box ATPases. Nucleic Acids Res. 47: 4349–4362, https://doi.org/10.1093/nar/gkz150 .
doi: 10.1093/nar/gkz150
He, Y., Andersen, G.R., and Nielsen, K.H. (2010). Structural basis for the function of DEAH helicases. EMBO Rep. 11: 180–186, https://doi.org/10.1038/embor.2010.11 .
doi: 10.1038/embor.2010.11
Jaafar, M., Contreras, J., Dominique, C., Martín-Villanueva, S., Capeyrou, R., Vitali, P., Rodríguez-Galán, O., Velasco, C., Humbert, O., Watkins, N.J., et al.. (2021). Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. Nat. Commun. 12: 6153, https://doi.org/10.1038/s41467-021-26207-w .
doi: 10.1038/s41467-021-26207-w
Jankowsky, E., Gross, C.H., Shuman, S., and Pyle, A.M. (2001). Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291: 121–125, https://doi.org/10.1126/science.291.5501.121 .
doi: 10.1126/science.291.5501.121
Jia, H., Wang, X., Anderson, J.T., and Jankowsky, E. (2012). RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex. Proc. Natl. Acad. Sci. U.S.A. 109: 7292–7297, https://doi.org/10.1073/pnas.1201085109 .
doi: 10.1073/pnas.1201085109
Johnson, S.J. and Jackson, R.N. (2013). Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol. 10: 33–43, https://doi.org/10.4161/rna.22101 .
doi: 10.4161/rna.22101
Karbstein, K. (2022). Attacking a DEAD problem: the role of DEAD-box ATPases in ribosome assembly and beyond. In: Methods in enzymology . Elsevier, Amsterdam, pp. 19–38.
Kater, L., Thoms, M., Barrio-Garcia, C., Cheng, J., Ismail, S., Ahmed, Y.L., Bange, G., Kressler, D., Berninghausen, O., Sinning, I., et al.. (2017). Visualizing the assembly pathway of nucleolar pre-60S ribosomes. Cell 171: 1599–1610.
Khoshnevis, S., Askenasy, I., Johnson, M.C., Dattolo, M.D., Young-Erdos, C.L., Stroupe, M.E., and Karbstein, K. (2016). The DEAD-box protein Rok1 orchestrates 40S and 60S ribosome assembly by promoting the release of Rrp5 from pre-40S ribosomes to allow for 60S maturation. PLoS Biol. 14: e1002480, https://doi.org/10.1371/journal.pbio.1002480 .
doi: 10.1371/journal.pbio.1002480
Khreiss, A., Capeyrou, R., Lebaron, S., Albert, B., Bohnsack, K.E., Bohnsack, M.T., Henry, Y., Henras, A.K., and Humbert, O. (2023). The DEAD-box protein Dbp6 is an ATPase and RNA annealase interacting with the peptidyl transferase center (PTC) of the ribosome. Nucleic Acids Res. 51: 744–764, https://doi.org/10.1093/nar/gkac1196 .
doi: 10.1093/nar/gkac1196
Klinge, S. and Woolford, J.L. (2019). Ribosome assembly coming into focus. Nat. Rev. Mol. Cell Biol. 20: 116–131, https://doi.org/10.1038/s41580-018-0078-y .
doi: 10.1038/s41580-018-0078-y
Koš, M. and Tollervey, D. (2005). The putative RNA helicase Dbp4p is required for release of the U14 snoRNA from preribosomes in Saccharomyces cerevisiae. Mol. Cell 20: 53–64, https://doi.org/10.1016/j.molcel.2005.08.022 .
doi: 10.1016/j.molcel.2005.08.022
Kudla, G., Granneman, S., Hahn, D., Beggs, J.D., and Tollervey, D. (2011). Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl. Acad. Sci. U.S.A. 108: 10010–10015, https://doi.org/10.1073/pnas.1017386108 .
doi: 10.1073/pnas.1017386108
Lebaron, S., Papin, C., Capeyrou, R., Chen, Y.-L., Froment, C., Monsarrat, B., Caizergues-Ferrer, M., Grigoriev, M., and Henry, Y. (2009). The ATPase and helicase activities of Prp43p are stimulated by the G-patch protein Pfa1p during yeast ribosome biogenesis. EMBO J. 28: 3808–3819, https://doi.org/10.1038/emboj.2009.335 .
doi: 10.1038/emboj.2009.335
Liang, X. and Fournier, M.J. (2006). The helicase Has1p is required for snoRNA release from pre-rRNA. Mol. Cell. Biol. 26: 7437–7450, https://doi.org/10.1128/mcb.00664-06 .
doi: 10.1128/mcb.00664-06
Lin, R., Correll, C.C., and Johnson, A.W. (2022). In vitro characterization of Dhr1 from Saccharomyces cerevisiae. In: Methods in enzymology . Elsevier, Amsterdam, pp. 77–101.
Linder, P. and Jankowsky, E. (2011). From unwinding to clamping — the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12: 505–516, https://doi.org/10.1038/nrm3154 .
doi: 10.1038/nrm3154
Liu, X., Huang, H., and Karbstein, K. (2021). Blocking a dead-end assembly pathway creates a point of regulation for the DEAD-box ATPase Has1 and prevents platform misassembly. BioRxiv . https://doi.org/10.1101/2021.09.06.459192 .
doi: 10.1101/2021.09.06.459192
Ma, W.K., Cloutier, S.C., and Tran, E.J. (2013). The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J. Mol. Biol. 425: 3824–3838, https://doi.org/10.1016/j.jmb.2013.05.016 .
doi: 10.1016/j.jmb.2013.05.016
Manikas, R.-G., Thomson, E., Thoms, M., and Hurt, E. (2016). The K+-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation. Nucleic Acids Res. 44: 1800–1812, https://doi.org/10.1093/nar/gkw045 .
doi: 10.1093/nar/gkw045
Martin, R., Hackert, P., Ruprecht, M., Simm, S., Brüning, L., Mirus, O., Sloan, K.E., Kudla, G., Schleiff, E., and Bohnsack, M.T. (2014). A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. RNA 20: 1173–1182, https://doi.org/10.1261/rna.044669.114 .
doi: 10.1261/rna.044669.114
Martin, R., Straub, A.U., Doebele, C., and Bohnsack, M.T. (2013). DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol. 10: 4–18, https://doi.org/10.4161/rna.21879 .
doi: 10.4161/rna.21879
Mitterer, V. and Pertschy, B. (2022). RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol. 19: 781–810, https://doi.org/10.1080/15476286.2022.2079890 .
doi: 10.1080/15476286.2022.2079890
Olsen, K.J. and Johnson, S.J. (2021). Mtr4 RNA helicase structures and interactions. Biol. Chem. 402: 605–616, https://doi.org/10.1515/hsz-2020-0329 .
doi: 10.1515/hsz-2020-0329
Pertschy, B., Schneider, C., Gnädig, M., Schäfer, T., Tollervey, D., and Hurt, E. (2009). RNA helicase Prp43 and its Co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. J. Biol. Chem. 284: 35079–35091, https://doi.org/10.1074/jbc.m109.040774 .
doi: 10.1074/jbc.m109.040774
Robert-Paganin, J., Halladjian, M., Blaud, M., Lebaron, S., Delbos, L., Chardon, F., Capeyrou, R., Humbert, O., Henry, Y., Henras, A.K., et al.. (2017). Functional link between DEAH/RHA helicase Prp43 activation and ATP base binding. Nucleic Acids Res. 45: 1539–1552, https://doi.org/10.1093/nar/gkw1233 .
doi: 10.1093/nar/gkw1233
Sailer, C., Jansen, J., Sekulski, K., Cruz, V.E., Erzberger, J.P., and Stengel, F. (2022). A comprehensive landscape of 60S ribosome biogenesis factors. Cell Rep. 38: 110353, https://doi.org/10.1016/j.celrep.2022.110353 .
doi: 10.1016/j.celrep.2022.110353
Sanghai, Z.A., Miller, L., Molloy, K.R., Barandun, J., Hunziker, M., Chaker-Margot, M., Wang, J., Chait, B.T., and Klinge, S. (2018). Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 556: 126–129, https://doi.org/10.1038/nature26156 .
doi: 10.1038/nature26156
Sardana, R., Liu, X., Granneman, S., Zhu, J., Gill, M., Papoulas, O., Marcotte, E.M., Tollervey, D., Correll, C.C., and Johnson, A.W. (2015). The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. PLoS Biol. 13: e1002083, https://doi.org/10.1371/journal.pbio.1002083 .
doi: 10.1371/journal.pbio.1002083
Schuller, J.M., Falk, S., Fromm, L., Hurt, E., and Conti, E. (2018). Structure of the nuclear exosome captured on a maturing preribosome. Science 360: 219–222, https://doi.org/10.1126/science.aar5428 .
doi: 10.1126/science.aar5428
Semlow, D.R., Blanco, M.R., Walter, N.G., and Staley, J.P. (2016). Spliceosomal DEAH-box ATPases remodel pre-mRNA to activate alternative splice sites. Cell 164: 985–998, https://doi.org/10.1016/j.cell.2016.01.025 .
doi: 10.1016/j.cell.2016.01.025
Soltanieh, S., Osheim, Y.N., Spasov, K., Trahan, C., Beyer, A.L., and Dragon, F. (2015). DEAD-box RNA helicase Dbp4 is required for small-subunit processome formation and function. Mol. Cell. Biol. 35: 816–830, https://doi.org/10.1128/mcb.01348-14 .
doi: 10.1128/mcb.01348-14
Tauchert, M.J., Fourmann, J.-B., Christian, H., Lührmann, R., and Ficner, R. (2016). Structural and functional analysis of the RNA helicase Prp43 from the thermophilic eukaryote Chaetomium thermophilum. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 72: 112–120, https://doi.org/10.1107/s2053230x15024498 .
doi: 10.1107/s2053230x15024498
Tauchert, M.J., Fourmann, J.-B., Lührmann, R., and Ficner, R. (2017). Structural insights into the mechanism of the DEAH-box RNA helicase Prp43. eLife 6: e21510, https://doi.org/10.7554/eLife.21510 .
doi: 10.7554/eLife.21510
Taylor, L.L., Jackson, R.N., Rexhepaj, M., Klauer King, A., Lott, L.K., van Hoof, A., and Johnson, S.J. (2014). The Mtr4 ratchet helix and arch domain both function to promote RNA unwinding. Nucleic Acids Res. 42: 13861–13872, https://doi.org/10.1093/nar/gku1208 .
doi: 10.1093/nar/gku1208
Travis, A.J., Moody, J., Helwak, A., Tollervey, D., and Kudla, G. (2014). Hyb: a bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data. Methods 65: 263–273, https://doi.org/10.1016/j.ymeth.2013.10.015 .
doi: 10.1016/j.ymeth.2013.10.015
van, Hoof, A., Lennertz, P., and Parker, R. (2000). Yeast exosome mutants accumulate 3-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol. 20: 441–452, https://doi.org/10.1128/mcb.20.2.441-452.2000 .
doi: 10.1128/mcb.20.2.441-452.2000
Walbott, H., Mouffok, S., Capeyrou, R., Lebaron, S., Humbert, O., van Tilbeurgh, H., Henry, Y., and Leulliot, N. (2010). Prp43p contains a processive helicase structural architecture with a specific regulatory domain. EMBO J. 29: 2194–2204, https://doi.org/10.1038/emboj.2010.102 .
doi: 10.1038/emboj.2010.102
Wang, X., Jia, H., Jankowsky, E., and Anderson, J.T. (2008). Degradation of hypomodified tRNAiMet in vivo involves RNA-dependent ATPase activity of the DExH helicase Mtr4p. RNA 14: 107–116, https://doi.org/10.1261/rna.808608 .
doi: 10.1261/rna.808608
Yang, Q. and Jankowsky, E. (2005). ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44: 13591–13601, https://doi.org/10.1021/bi0508946 .
doi: 10.1021/bi0508946
Young, C.L., Khoshnevis, S., and Karbstein, K. (2013). Cofactor-dependent specificity of a DEAD-box protein. Proc. Natl. Acad. Sci. U.S.A. 110: E2668–E2676, https://doi.org/10.1073/pnas.1302577110 .
doi: 10.1073/pnas.1302577110
Zhou, D., Zhu, X., Zheng, S., Tan, D., Dong, M.-Q., and Ye, K. (2019). Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate. Protein Cell 10: 120–130, https://doi.org/10.1007/s13238-018-0526-7 .
doi: 10.1007/s13238-018-0526-7
Zhu, J., Liu, X., Anjos, M., Correll, C.C., and Johnson, A.W. (2016). Utp14 recruits and activates the RNA helicase Dhr1 to undock U3 snoRNA from the preribosome. Mol. Cell. Biol. 36: 965–978, https://doi.org/10.1128/mcb.00773-15 .
doi: 10.1128/mcb.00773-15

Auteurs

Ali Khreiss (A)

Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.

Katherine E Bohnsack (KE)

Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.

Markus T Bohnsack (MT)

Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.
Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.
Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Classifications MeSH