Evolution of Bipartite and Segmented Viruses from Monopartite Viruses.
assembly of viruses
bipartite viruses
evolutionary model
segmented viruses
Journal
Viruses
ISSN: 1999-4915
Titre abrégé: Viruses
Pays: Switzerland
ID NLM: 101509722
Informations de publication
Date de publication:
10 05 2023
10 05 2023
Historique:
received:
05
04
2023
revised:
30
04
2023
accepted:
05
05
2023
medline:
29
5
2023
pubmed:
27
5
2023
entrez:
27
5
2023
Statut:
epublish
Résumé
RNA viruses may be monopartite (all genes on one strand), multipartite (two or more strands packaged separately) or segmented (two or more strands packaged together). In this article, we consider competition between a complete monopartite virus, A, and two defective viruses, D and E, that have complementary genes. We use stochastic models that follow gene translation, RNA replication, virus assembly, and transmission between cells. D and E multiply faster than A when stored in the same host as A or when together in the same host, but they cannot multiply alone. D and E strands are packaged as separate particles unless a mechanism evolves that allows assembly of D + E segmented particles. We show that if defective viruses assemble rapidly into separate particles, the formation of segmented particles is selected against. In this case, D and E spread as parasites of A, and the bipartite D + E combination eliminates A if the transmissibility is high. Alternatively, if defective strands do not assemble rapidly into separate particles, then a mechanism for assembly of segmented particles is selected for. In this case, the segmented virus can eliminate A if transmissibility is high. Conditions of excess protein resources favor bipartite viruses, while conditions of excess RNA resources favor segmented viruses. We study the error threshold behavior that arises when deleterious mutations are introduced. Relative to bipartite and segmented viruses, deleterious mutations favor monopartite viruses. A monopartite virus can give rise to either a bipartite or a segmented virus, but it is unlikely that both will originate from the same virus.
Identifiants
pubmed: 37243221
pii: v15051135
doi: 10.3390/v15051135
pmc: PMC10223652
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
PLoS Genet. 2011 Mar;7(3):e1001344
pubmed: 21437265
Trends Microbiol. 2011 Mar;19(3):136-44
pubmed: 21195621
Proc Biol Sci. 2012 Sep 22;279(1743):3812-9
pubmed: 22764164
NPJ Syst Biol Appl. 2017 Nov 9;3:34
pubmed: 29263796
mBio. 2018 Nov 27;9(6):
pubmed: 30482837
J Gen Virol. 2017 Apr;98(4):529-531
pubmed: 28452295
J Gen Virol. 2017 Dec;98(12):2914-2915
pubmed: 29120298
Annu Rev Virol. 2020 Sep 29;7(1):203-218
pubmed: 32991271
J Mol Evol. 1987;25(4):277-81
pubmed: 3118044
J Gen Virol. 2020 Apr;101(4):364-365
pubmed: 32134375
Annu Rev Phytopathol. 2006;44:61-87
pubmed: 16480335
J Gen Virol. 2017 Aug;98(8):1999-2000
pubmed: 28786782
J Mol Evol. 1984;20(2):135-46
pubmed: 6433032
J Phys Chem B. 2015 Nov 5;119(44):13991-4002
pubmed: 26435053
J Virol. 1982 Jul;43(1):18-25
pubmed: 6286996
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6744-9
pubmed: 24753611
Curr Opin Virol. 2018 Dec;33:89-95
pubmed: 30121469
J Gen Virol. 2017 Mar;98(3):352-354
pubmed: 28366187
PLoS Pathog. 2017 May 5;13(5):e1006365
pubmed: 28475646
Viruses. 2019 Aug 14;11(8):
pubmed: 31416187
Curr Top Microbiol Immunol. 1981;93:151-207
pubmed: 7026180
PLoS Pathog. 2016 Nov 3;12(11):e1005819
pubmed: 27812219
J Theor Biol. 1991 Nov 21;153(2):229-46
pubmed: 1787738
J Gen Virol. 2020 May;101(5):454-455
pubmed: 32375992
Adv Virus Res. 1991;40:181-211
pubmed: 1957718
J Virol. 2012 Mar;86(6):3318-26
pubmed: 22205731
Nat Microbiol. 2019 Jul;4(7):1075-1087
pubmed: 31160826