ATP-Responsive Nanoparticles Covered with Biomolecular Machine "Chaperonin GroEL".

Biomolecular Machine GroEL Host-Guest Chemistry Nanoparticle Protein Assembly

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
01 08 2023
Historique:
received: 06 04 2023
medline: 26 7 2023
pubmed: 27 5 2023
entrez: 27 5 2023
Statut: ppublish

Résumé

Herein, we report an ATP-responsive nanoparticle (

Identifiants

pubmed: 37243902
doi: 10.1002/anie.202304894
doi:

Substances chimiques

Chaperonins EC 3.6.1.-
Adenosine Triphosphate 8L70Q75FXE
Chaperonin 60 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202304894

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

 
C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025-1102;
D. V. Talapin, E. V. Shevchenko, Chem. Rev. 2016, 116, 10343-10345;
Frontiers of Nanoscience, Vol. 16 (Eds.: N. Feliu, W. J. Parak), Elsevier, Cambridge, 2020;
M. Grzelczak, L. M. Liz-Marzán, R. Klajn, Chem. Soc. Rev. 2019, 48, 1342-1361.
 
Z. Wu, N. Song, R. Menz, B. Pingali, Y. W. Yang, Y. Zheng, Nanomedicine 2015, 10, 1493-1514;
M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, R. Langer, Nat. Rev. Drug Discovery 2021, 20, 104-124;
M. M. Mahan, A. L. Doiron, J. Nanomater. 2018, 2018, 5837276;
X. Han, K. Xu, O. Taratula, K. Farsad, Nanoscale 2019, 11, 799-819;
V. Montes-García, M. A. Squillaci, M. Diez-Castellnou, Q. K. Ong, F. Stellacci, P. Samorì, Chem. Soc. Rev. 2021, 50, 1269-1304;
C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Chem. Rev. 2020, 120, 1184-1249;
H. Mattoussi, V. M. Rotello, Adv. Drug Delivery Rev. 2013, 65, 605-606;
L. Liao, J. Liu, E. C. Dreaden, S. W. Morton, K. E. Shopsowitz, P. T. Hammond, J. A. Johnson, J. Am. Chem. Soc. 2014, 136, 5896-5899.
 
R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science 1997, 277, 1078-1081;
K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 2003, 107, 668-677;
M. B. Ross, C. A. Mirkin, G. C. Schatz, J. Phys. Chem. C 2016, 120, 816-830;
W. P. McConnell, J. P. Novak, L. C. Brousseau, R. R. Fuierer, R. C. Tenent, D. L. Feldheim, J. Phys. Chem. B 2000, 104, 8925-8930;
M. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi, W. J. Parak, Chem. Soc. Rev. 2012, 41, 4306-4334;
C. M. Sims, S. K. Hanna, D. A. Heller, C. P. Horoszko, M. E. Johnson, A. R. M. Bustos, V. Reipa, K. R. Riley, B. C. Nelson, Nanoscale 2017, 9, 15226-15251.
 
S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 2013, 38, 1232-1261;
D. Ling, M. J. Hackett, T. Hyeon, Nano Today 2014, 9, 457-477;
A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, A. G. Kanaras, Chem. Rev. 2019, 119, 4819-4880;
K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, I. L. Medintz, Chem. Rev. 2013, 113, 1904-2074;
Q. Ong, Z. Luo, F. Stellacci, Acc. Chem. Res. 2017, 50, 1911-1919.
 
D. Roke, S. J. Wezenberg, B. L. Feringa, Proc. Natl. Acad. Sci. USA 2018, 115, 9423-9431;
J. P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080-11093;
J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094-11125.
 
B. Long, K. Nikitin, D. Fitzmaurice, J. Am. Chem. Soc. 2003, 125, 15490-15498;
R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, B. L. Feringa, Nature 2005, 437, 1337-1340;
R. Klajn, L. Fang, A. Coskun, M. A. Olson, P. J. Wesson, J. F. Stoddart, B. A. Grzybowski, J. Am. Chem. Soc. 2009, 131, 4233-4235;
R. Klajn, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2010, 39, 2203-2237.
 
H. Hess, G. D. Bachand, V. Vogel, Chem. Eur. J. 2004, 10, 2110-2116;
K. Kinbara, T. Aida, Chem. Rev. 2005, 105, 1377-1400;
A. Agarwal, H. Hess, Prog. Polym. Sci. 2010, 35, 252-277;
H. Hess, Annu. Rev. Biomed. Eng. 2011, 13, 429-450;
G. Saper, H. Hess, Chem. Rev. 2020, 120, 288-309.
 
T. Tanaka, H. Yamasaki, N. Tsujimura, N. Nakamura, T. Matsunaga, Mater. Sci. Eng. C 1997, 5, 121-124;
D. Ishii, K. Kinbara, Y. Ishida, N. Ishii, M. Okochi, M. Yohda, T. Aida, Nature 2003, 423, 628-632;
H. Gu, J. Chao, S. J. Xiao, N. C. Seeman, Nature 2010, 465, 202-205;
T. G. Cha, J. Pan, H. Chen, J. Salgado, X. Li, C. Mao, J. H. Choi, Nat. Nanotechnol. 2014, 9, 39-43;
M. Tominaga, H. Kojima, E. Yokota, H. Orii, R. Nakamori, E. Katayama, M. Anson, T. Shimmen, K. Oiwa, EMBO J. 2003, 22, 1263-1272.
 
K. E. Bujold, A. Lacroix, H. F. Sleiman, Chem 2018, 4, 495-521;
N. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2018, 3, 17068;
T. G. W. Edwardson, K. L. Lau, D. Bousmail, C. J. Serpell, H. F. Sleiman, Nat. Chem. 2016, 8, 162-170;
Y. Ke, C. Castro, J. H. Choi, Annu. Rev. Biomed. Eng. 2018, 20, 375-401.
 
G. H. Lorimer, Structure 1994, 2, 1125-1128;
Z. Xu, A. L. Horwich, P. B. Sigler, Nature 1997, 388, 741-750.
 
H. Taguchi, J. Biochem. 2005, 137, 543-549;
H. Taguchi, J. Mol. Biol. 2015, 427, 2912-2918;
R. Gruber, A. Horovitz, Chem. Rev. 2016, 116, 6588-6606.
 
S. Biswas, K. Kinbara, N. Oya, N. Ishii, H. Taguchi, T. Aida, J. Am. Chem. Soc. 2009, 131, 7556-7557;
S. Biswas, K. Kinbara, T. Niwa, H. Taguchi, N. Ishii, S. Watanabe, K. Miyata, K. Kataoka, T. Aida, Nat. Chem. 2013, 5, 613-620;
S. Sim, T. Aida, Acc. Chem. Res. 2017, 50, 492-497;
S. Sim, D. Miyajima, T. Niwa, H. Taguchi, T. Aida, J. Am. Chem. Soc. 2015, 137, 4658-4661.
 
C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996, 382, 607-609;
J. I. Cutler, E. Auyeung, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 1376-1391;
X. Zhang, M. R. Servos, J. Liu, J. Am. Chem. Soc. 2012, 134, 7266-7269;
B. L. Baldock, J. E. Hutchison, Anal. Chem. 2016, 88, 12072-12080.
 
T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813-817;
T. Aida, E. W. Meijer, Isr. J. Chem. 2020, 60, 33-47;
P. K. Hashim, J. Bergueiro, E. W. Meijer, T. Aida, Prog. Polym. Sci. 2020, 105, 101250.
 
D. Kashiwagi, S. Sim, T. Niwa, H. Taguchi, T. Aida, J. Am. Chem. Soc. 2018, 140, 26-29;
D. Kashiwagi, H. K. Shen, S. Sim, K. Sano, Y. Ishida, A. Kimura, T. Niwa, H. Taguchi, T. Aida, J. Am. Chem. Soc. 2020, 142, 13310-13315.
X. Sun, S. M. Tabakman, W. S. Seo, L. Zhang, G. Zhang, S. Sherlock, L. Bai, H. Dai, Angew. Chem. Int. Ed. 2009, 48, 939-942.
PDI=δ2/ZD2, where ZD is the intensity-weighted hydrodynamic size and δ is the standard deviation of ZD.
Y. Makino, K. Amada, H. Taguchi, M. Yoshida, J. Biol. Chem. 1997, 272, 12468-12474.
K. Shiseki, N. Murai, F. Motojima, T. Hisabori, M. Yoshida, H. Taguchi, J. Biol. Chem. 2001, 276, 11335-11338.
W. A. Fenton, Y. Kashi, K. Furtak, A. L. Horwich, Nature 1994, 371, 614-619.
A. Koike-Takeshita, K. Mitsuoka, H. Taguchi, J. Biol. Chem. 2014, 289, 30005-30011.
J. M. Ren, T. G. McKenzie, Q. Fu, E. H. H. Wong, J. Xu, Z. An, S. Shanmugam, T. P. Davis, C. Boyer, G. G. Qiao, Chem. Rev. 2016, 116, 6743-6836.
I. Gállego, M. A. Grover, N. V. Hud, Angew. Chem. Int. Ed. 2015, 54, 6765-6769.

Auteurs

Hao K Shen (HK)

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Kiyoshi Morishita (K)

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

P K Hashim (PK)

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Kou Okuro (K)

State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

Daiki Kashiwagi (D)

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Ayumi Kimura (A)

Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan.

Haruaki Yanagisawa (H)

Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Masahide Kikkawa (M)

Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Tatsuya Niwa (T)

Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, 266-8501, Japan.

Hideki Taguchi (H)

Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, 266-8501, Japan.

Takuzo Aida (T)

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Humans Molecular Chaperones Brain Protein Folding Mutation

Brain malformations and seizures by impaired chaperonin function of TRiC.

Florian Kraft, Piere Rodriguez-Aliaga, Weimin Yuan et al.
1.00
Humans Chaperonin Containing TCP-1 Brain Seizures Protein Folding

Classifications MeSH