Oncogenic Transformation Drives DNA Methylation Loss and Transcriptional Activation at Transposable Element Loci.


Journal

Cancer research
ISSN: 1538-7445
Titre abrégé: Cancer Res
Pays: United States
ID NLM: 2984705R

Informations de publication

Date de publication:
01 08 2023
Historique:
received: 08 11 2022
revised: 30 03 2023
accepted: 25 05 2023
pmc-release: 01 02 2024
medline: 23 10 2023
pubmed: 30 5 2023
entrez: 30 5 2023
Statut: ppublish

Résumé

Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation. Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.

Identifiants

pubmed: 37249603
pii: 727006
doi: 10.1158/0008-5472.CAN-22-3485
pmc: PMC10527578
mid: NIHMS1906354
doi:

Substances chimiques

DNA Transposable Elements 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2584-2599

Subventions

Organisme : NCI NIH HHS
ID : R37 CA251270
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM130680
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA227259
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG066101
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA247756
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES011858
Pays : United States
Organisme : NCI NIH HHS
ID : R00 CA204592
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA260691
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007748
Pays : United States

Informations de copyright

©2023 American Association for Cancer Research.

Références

Nat Med. 2010 May;16(5):571-9, 1p following 579
pubmed: 20436485
Nat Commun. 2019 Nov 19;10(1):5228
pubmed: 31745090
Genome Res. 2017 Jan;27(1):118-132
pubmed: 27999094
Nat Genet. 2023 Apr;55(4):631-639
pubmed: 36973455
Clin Cancer Res. 2015 Jan 15;21(2):471-83
pubmed: 25370465
Nat Genet. 2013 Jul;45(7):836-41
pubmed: 23708189
FEBS J. 2022 Mar;289(5):1160-1179
pubmed: 33471418
Nat Rev Cancer. 2011 Sep 23;11(10):726-34
pubmed: 21941284
Nat Rev Cancer. 2011 Oct 13;11(11):761-74
pubmed: 21993244
Clin Chem. 2017 Apr;63(4):816-822
pubmed: 28188229
J Oral Pathol Med. 2020 Nov;49(10):1053-1060
pubmed: 32740989
J Mol Evol. 1980 Dec;16(2):111-20
pubmed: 7463489
Cell Stem Cell. 2011 Jun 3;8(6):676-87
pubmed: 21624812
Gene. 2009 Dec 15;448(2):115-23
pubmed: 19540319
Nature. 1988 May 5;333(6168):87-90
pubmed: 2834650
APMIS. 2016 Jan-Feb;124(1-2):31-43
pubmed: 26818260
Cancer Cell. 2022 Aug 8;40(8):792-797
pubmed: 35907399
Nat Methods. 2012 Nov;9(11):1046
pubmed: 23281567
Retrovirology. 2018 Aug 28;15(1):59
pubmed: 30153831
Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9
pubmed: 15310846
Mol Cells. 2009 Aug 31;28(2):99-103
pubmed: 19669627
Genome Res. 2014 Jul;24(7):1053-63
pubmed: 24823667
Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10254-60
pubmed: 10468595
Int J Mol Sci. 2017 May 04;18(5):
pubmed: 28471386
Genome Biol. 2014;15(12):550
pubmed: 25516281
Genome Res. 2006 Feb;16(2):157-63
pubmed: 16365381
Cancer Res. 2021 Oct 15;81(20):5176-5189
pubmed: 34433584
Nature. 1999 Jul 29;400(6743):464-8
pubmed: 10440377
Cancer Res. 2021 Jul 1;81(13):3449-3460
pubmed: 33941616
Bioessays. 2016 Jan;38(1):109-17
pubmed: 26735931
Nat Genet. 2019 Apr;51(4):611-617
pubmed: 30926969
Oncotarget. 2014 Feb 15;5(3):587-98
pubmed: 24583822
PLoS Comput Biol. 2019 Sep 30;15(9):e1006453
pubmed: 31568525
Genome Biol. 2016 Oct 7;17(1):208
pubmed: 27717381
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14007-12
pubmed: 10570189
Viruses. 2022 Nov 12;14(11):
pubmed: 36423114
J Clin Invest. 2022 Jul 15;132(14):
pubmed: 35671108
Nat Genet. 2020 Mar;52(3):306-319
pubmed: 32024998
Int J Cancer. 2007 Jan 1;120(1):81-90
pubmed: 17013901
Oncogene. 2016 May 12;35(19):2542-6
pubmed: 26279299
J Invest Dermatol. 1996 Jan;106(1):125-8
pubmed: 8592062
RNA Biol. 2010 Nov-Dec;7(6):706-11
pubmed: 21045547
Genome Biol. 2012 Oct 03;13(10):R87
pubmed: 23034086
New Phytol. 2021 Feb;229(4):2238-2250
pubmed: 33091182
Cancers (Basel). 2022 Sep 13;14(18):
pubmed: 36139593
Bioinformatics. 2022 Oct 14;38(20):4806-4808
pubmed: 36000853
Front Microbiol. 2018 Jan 15;8:2691
pubmed: 29379485
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nat Genet. 1998 Oct;20(2):116-7
pubmed: 9771701
Cell. 2015 Aug 27;162(5):961-73
pubmed: 26317465
Oncogene. 2001 Nov 26;20(54):7899-907
pubmed: 11753672
BMC Bioinformatics. 2004 Aug 19;5:113
pubmed: 15318951
Nat Commun. 2022 Nov 8;13(1):6659
pubmed: 36347867
Mob DNA. 2021 Jan 23;12(1):4
pubmed: 33485368
Genomics. 2012 Jan;99(1):10-7
pubmed: 22044633
Mol Pharmacol. 2004 Jan;65(1):18-27
pubmed: 14722233
Nat Genet. 2018 Apr;50(4):591-602
pubmed: 29610480
Cancer Res. 2008 Jul 15;68(14):5869-77
pubmed: 18632641
Nucleic Acids Res. 2015 Dec 2;43(21):e141
pubmed: 26184873
Cancer Cell. 2018 Feb 12;33(2):309-321.e5
pubmed: 29438699
Int J Mol Sci. 2022 Dec 19;23(24):
pubmed: 36555863
Nature. 2020 Dec;588(7836):169-173
pubmed: 33087935
Bioinformatics. 2011 Jun 1;27(11):1571-2
pubmed: 21493656
Nat Rev Cancer. 2017 Jul;17(7):415-424
pubmed: 28642606
Microbiol Spectr. 2023 Mar 2;:e0443822
pubmed: 36861980
Bioinformatics. 2015 Nov 15;31(22):3593-9
pubmed: 26206304
J Biomed Sci. 2018 Mar 12;25(1):22
pubmed: 29526163
Genome Res. 2016 Jun;26(6):745-55
pubmed: 27197217
Genome Res. 2018 Aug;28(8):1147-1157
pubmed: 29970451
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Science. 2012 Aug 24;337(6097):967-71
pubmed: 22745252
Cell. 2015 Aug 27;162(5):974-86
pubmed: 26317466
Am J Pathol. 2020 Oct;190(10):2155-2164
pubmed: 32679231
Nat Struct Mol Biol. 2014 Apr;21(4):423-5
pubmed: 24681886

Auteurs

Tomas Kanholm (T)

The George Washington University Cancer Center (GWCC), Washington, DC.
Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC.
The Institute for Biomedical Sciences at the George Washington University, Washington, DC.

Uzma Rentia (U)

The George Washington University Cancer Center (GWCC), Washington, DC.
Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC.

Melissa Hadley (M)

The George Washington University Cancer Center (GWCC), Washington, DC.
Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC.

Jennifer A Karlow (JA)

Department of Pathology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts.

Olivia L Cox (OL)

The George Washington University Cancer Center (GWCC), Washington, DC.
Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC.

Noor Diab (N)

The George Washington University Cancer Center (GWCC), Washington, DC.
Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC.
George Washington University School of Medicine and Health Sciences, Washington, DC.

Matthew L Bendall (ML)

Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York.

Tyson Dawson (T)

The Institute for Biomedical Sciences at the George Washington University, Washington, DC.
Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC.

James I McDonald (JI)

The George Washington University Cancer Center (GWCC), Washington, DC.
Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC.

Wenbing Xie (W)

Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Keith A Crandall (KA)

Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC.

Kathleen H Burns (KH)

Department of Pathology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts.

Stephen B Baylin (SB)

Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.

Hari Easwaran (H)

Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Katherine B Chiappinelli (KB)

The George Washington University Cancer Center (GWCC), Washington, DC.
Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC.
The Institute for Biomedical Sciences at the George Washington University, Washington, DC.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH