PRC2 direct transfer from G-quadruplex RNA to dsDNA has implications for RNA-binding chromatin modifiers.


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
06 06 2023
Historique:
medline: 1 6 2023
pubmed: 30 5 2023
entrez: 30 5 2023
Statut: ppublish

Résumé

The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.

Identifiants

pubmed: 37252986
doi: 10.1073/pnas.2220528120
pmc: PMC10266057
doi:

Substances chimiques

Chromatin 0
Polycomb Repressive Complex 2 EC 2.1.1.43
RNA 63231-63-0
DNA 9007-49-2
Nucleosomes 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2220528120

Subventions

Organisme : NIGMS NIH HHS
ID : F32 GM147934
Pays : United States

Références

Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72
pubmed: 19571010
Genome Res. 2016 Jul;26(7):896-907
pubmed: 27197219
Mol Cell. 2021 Feb 4;81(3):488-501.e9
pubmed: 33338397
Mol Cell. 2015 Feb 5;57(3):552-8
pubmed: 25601759
Science. 2021 Jan 22;371(6527):
pubmed: 33479123
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2220537120
pubmed: 37339225
Nucleic Acids Res. 2004 Jun 03;32(10):3040-52
pubmed: 15178741
Mol Cell. 2023 Jul 20;83(14):2449-2463.e13
pubmed: 37402367
Genes Dev. 2014 Sep 15;28(18):1983-8
pubmed: 25170018
Mol Cell. 2017 Mar 16;65(6):1056-1067.e5
pubmed: 28306504
RNA. 2020 Mar;26(3):229-239
pubmed: 31879280
Genome Biol. 2016 Feb 16;17:28
pubmed: 26883116
Cold Spring Harb Perspect Biol. 2015 Jul 01;7(7):a019091
pubmed: 26134319
EMBO J. 1999 Dec 1;18(23):6630-41
pubmed: 10581237
RNA. 2015 Dec;21(12):2007-22
pubmed: 26574518
Science. 2015 Nov 20;350(6263):978-81
pubmed: 26516199
Science. 2002 Nov 1;298(5595):1039-43
pubmed: 12351676
Mol Cell. 2010 Dec 22;40(6):939-53
pubmed: 21172659
FEBS Lett. 2011 Oct 3;585(19):3011-4
pubmed: 21856302
RNA Biol. 2019 Feb;16(2):176-184
pubmed: 30608221
Mol Cell. 2013 Mar 7;49(5):808-24
pubmed: 23473600
Elife. 2018 Aug 08;7:
pubmed: 30088474
Nature. 2011 Jan 20;469(7330):343-9
pubmed: 21248841
Curr Opin Struct Biol. 2002 Jun;12(3):311-9
pubmed: 12127449
Cell. 2002 Oct 18;111(2):197-208
pubmed: 12408864
Curr Opin Chem Biol. 2019 Dec;53:118-124
pubmed: 31586479
Genes Dev. 2002 Nov 15;16(22):2893-905
pubmed: 12435631
Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4903-7
pubmed: 1594591
J Mol Biol. 1976 Oct 25;107(2):145-58
pubmed: 1003464
Mol Cell. 2021 Jun 17;81(12):2625-2639.e5
pubmed: 33887196
Biochem Soc Trans. 2021 Dec 17;49(6):2639-2653
pubmed: 34747969
Mol Cell. 2008 Jun 20;30(6):755-66
pubmed: 18514006
Nucleic Acids Res. 2011 Mar;39(6):2249-59
pubmed: 21097894
Nat Commun. 2022 May 4;13(1):2449
pubmed: 35508531
Nat Genet. 2020 Sep;52(9):931-938
pubmed: 32632336
Cell. 2002 Oct 18;111(2):185-96
pubmed: 12408863
Nat Struct Mol Biol. 2017 Dec;24(12):1028-1038
pubmed: 29058709
J Mol Biol. 1975 Jun 15;95(1):103-23
pubmed: 1171251
Science. 2023 Sep 22;381(6664):1331-1337
pubmed: 37733873
Biochemistry. 2002 Oct 1;41(39):11611-27
pubmed: 12269804
J Biol Chem. 1987 Feb 15;262(5):2085-92
pubmed: 3818586
Annu Rev Genet. 2017 Nov 27;51:385-411
pubmed: 28934594
Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15062-7
pubmed: 17008406
Nat Struct Mol Biol. 2013 Oct;20(10):1147-55
pubmed: 24096405
Mol Cell. 2014 Jul 17;55(2):171-85
pubmed: 24882207
Nucleic Acids Res. 2014 Apr;42(6):3783-91
pubmed: 24393773
Elife. 2017 Nov 29;6:
pubmed: 29185984
Biochemistry. 2022 Nov 15;61(22):2490-2494
pubmed: 36239332
Nat Chem Biol. 2020 Mar;16(3):257-266
pubmed: 31792445
Genomics. 2015 Feb;105(2):108-15
pubmed: 25451679
Mol Cell. 2021 Jul 15;81(14):2944-2959.e10
pubmed: 34166609
J Mol Biol. 1984 Jan 25;172(3):263-82
pubmed: 6319716
Nat Struct Mol Biol. 2013 Nov;20(11):1250-7
pubmed: 24077223
Nat Struct Mol Biol. 2019 Oct;26(10):899-909
pubmed: 31548724
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13871-6
pubmed: 18772384

Auteurs

Wayne O Hemphill (WO)

Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309.
HHMI, University of Colorado Boulder, Boulder, CO 80309.

Regan Fenske (R)

Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309.
HHMI, University of Colorado Boulder, Boulder, CO 80309.

Anne R Gooding (AR)

Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309.
HHMI, University of Colorado Boulder, Boulder, CO 80309.

Thomas R Cech (TR)

Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309.
HHMI, University of Colorado Boulder, Boulder, CO 80309.

Articles similaires

Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Classifications MeSH