A Mathematical Study of Metal Biosorption on Algal-Bacterial Granular Biofilms.
Biofilm
Biosorption
Free boundary value problem
Heavy metals
Numerical simulations
Photogranule
Journal
Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404
Informations de publication
Date de publication:
03 06 2023
03 06 2023
Historique:
received:
17
02
2023
accepted:
16
05
2023
medline:
5
6
2023
pubmed:
3
6
2023
entrez:
3
6
2023
Statut:
epublish
Résumé
A multiscale mathematical model describing the metals biosorption on algal-bacterial photogranules within a sequencing batch reactor (SBR) is presented. The model is based on systems of partial differential equations (PDEs) derived from mass conservation principles on a spherical free boundary domain with radial symmetry. Hyperbolic PDEs account for the dynamics of sessile species and their free sorption sites, where metals are adsorbed. Parabolic PDEs govern the diffusion, conversion and adsorption of nutrients and metals. The dual effect of metals on photogranule ecology is also modelled: metal stimulates the production of EPS by sessile species and negatively affects the metabolic activities of microbial species. Accordingly, a stimulation term for EPS production and an inhibition term for metal are included in all microbial kinetics. The formation and evolution of the granule domain are governed by an ordinary differential equation with a vanishing initial value, accounting for microbial growth, attachment and detachment phenomena. The model is completed with systems of impulsive differential equations describing the evolution of dissolved substrates, metals, and planktonic and detached biomasses within the granular-based SBR. The model is integrated numerically to examine the role of the microbial species and EPS in the adsorption process, and the effect of metal concentration and adsorption properties of biofilm components on the metal removal. Numerical results show an accurate description of the photogranules evolution and ecology and confirm the applicability of algal-bacterial photogranule technology for metal-rich wastewater treatment.
Identifiants
pubmed: 37269488
doi: 10.1007/s11538-023-01168-x
pii: 10.1007/s11538-023-01168-x
pmc: PMC10239425
doi:
Substances chimiques
diethylstilbestrol monophosphate
47341-71-9
Metals
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
63Informations de copyright
© 2023. The Author(s).
Références
Abbas F, Sudarsan R, Eberl HJ (2012) Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Math Biosci Eng 9(2):215
doi: 10.3934/mbe.2012.9.215
Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH et al (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102
Abouhend AS, McNair A, Kuo-Dahab WC, Watt C, Butler CS, Milferstedt K, Hamelin J, Seo J, Gikonyo GJ, El-Moselhy KM et al (2018) The oxygenic photogranule process for aeration-free wastewater treatment. Environ Sci Technol 52(6):3503–3511
doi: 10.1021/acs.est.8b00403
Abouhend AS, Milferstedt K, Hamelin J, Ansari AA, Butler C, Carbajal-González BI, Park C (2019) Growth progression of oxygenic photogranules and its impact on bioactivity for aeration-free wastewater treatment. Environ Sci Technol 54(1):486–496
doi: 10.1021/acs.est.9b04745
Ahalya N, Ramachandra T, Kanamadi R (2003) Biosorption of heavy metals. Res J Chem Environ 7(4):71–79
Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores Technol 98(12):2243–2257
doi: 10.1016/j.biortech.2005.12.006
Ajiboye TO, Oyewo OA, Onwudiwe DC (2021) Simultaneous removal of organics and heavy metals from industrial wastewater: a review. Chemosphere 262:128379
doi: 10.1016/j.chemosphere.2020.128379
Anjana K, Kaushik A, Kiran B, Nisha R (2007) Biosorption of Cr (VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J Hazard Mater 148(1–2):383–386
doi: 10.1016/j.jhazmat.2007.02.051
Ansari AA, Abouhend AS, Park C (2019) Effects of seeding density on photogranulation and the start-up of the oxygenic photogranule process for aeration-free wastewater treatment. Algal Res 40:101495
doi: 10.1016/j.algal.2019.101495
Berlanga M, Domènech Ò, Guerrero R (2014) Biofilm formation on polystyrene in detached vs. planktonic cells of polyhydroxyalkanoate-accumulating halomonas venusta. Int Microbiol 17:205–212
Brockmann D, Gérand Y, Park C, Milferstedt K, Hélias A, Hamelin J (2021) Wastewater treatment using oxygenic photogranule-based process has lower environmental impact than conventional activated sludge process. Biores Technol 319:124204
doi: 10.1016/j.biortech.2020.124204
Chojnacka K (2010) Biosorption and bioaccumulation-the prospects for practical applications. Environ Int 36(3):299–307
doi: 10.1016/j.envint.2009.12.001
Comte S, Guibaud G, Baudu M (2008) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater 151(1):185–193
doi: 10.1016/j.jhazmat.2007.05.070
D’Acunto B, Frunzo L (2011) Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models. Math Comput Model 53(9–10):1596–1606
doi: 10.1016/j.mcm.2010.12.024
D’Acunto B, Esposito G, Frunzo L, Mattei M, Pirozzi F (2016) Mathematical modeling of heavy metal biosorption in multispecies biofilms. J Environ Eng 142(9):4015020
doi: 10.1061/(ASCE)EE.1943-7870.0001052
D’Acunto B, Frunzo L, Mattei M (2018) On a free boundary problem for biosorption in biofilms. Nonlinear Anal Real World Appl 39:120–141
doi: 10.1016/j.nonrwa.2017.06.010
D’Acunto B, Frunzo L, Luongo V, Mattei M (2019) Free boundary approach for the attachment in the initial phase of multispecies biofilm growth. Z Angew Math Phys 70(3):1–16
doi: 10.1007/s00033-019-1134-y
D’Acunto B, Frunzo L, Luongo V, Mattei M, Tenore A (2021) Free boundary problem for the role of planktonic cells in biofilm formation and development. Z Angew Math Phys 72(4):1–17
doi: 10.1007/s00033-021-01561-3
Ferrentino R, Ferraro A, Mattei MR, Esposito G, Andreottola G (2018) Process performance optimization and mathematical modelling of a SBR-MBBR treatment at low oxygen concentration. Process Biochem 75:230–239
doi: 10.1016/j.procbio.2018.08.023
Flemming H-C, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)-part I: structural and ecological aspects. Water Sci Technol 43(6):1–8
doi: 10.2166/wst.2001.0326
Flora JR, Suidan MT, Biswas P, Sayles GD (1995) Modeling algal biofilms: role of carbon, light, cell surface charge, and ionic species. Water Environ Res 67(1):87–94
doi: 10.2175/106143095X131222
Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Biores Technol 160:3–14
doi: 10.1016/j.biortech.2013.12.102
Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol: Int Res Process Environ Clean Technol 84(1):13–28
doi: 10.1002/jctb.1999
Guerriero G, Mattei MR, Papirio S, Esposito G, Frunzo L (2022) Modelling the effect of SMP production and external carbon addition on s-driven autotrophic denitrification. Sci Rep 12(1):1–13
doi: 10.1038/s41598-022-10944-z
Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5(12):928–938
doi: 10.1038/nrmicro1774
Henze M, Gujer W, Mino T, Van Loosedrecht M (2006) Activated sludge models asm1, asm2, asm2d and asm3
Li T, Podola B, Melkonian M (2016) Investigating dynamic processes in a porous substrate biofilm photobioreactor-a modeling approach. Algal Res 13:30–40
doi: 10.1016/j.algal.2015.11.006
Liu H, Fang HH (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 80(7):806–811
doi: 10.1002/bit.10432
Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Biol 45(1):633–662
doi: 10.1146/annurev.pp.45.060194.003221
Mašić A, Eberl HJ (2012) Persistence in a single species CSTR model with suspended flocs and wall attached biofilms. Bull Math Biol 74(4):1001–1026
doi: 10.1007/s11538-011-9707-8
Mašić A, Eberl HJ (2014) A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor. Bull Math Biol 76(1):27–58
doi: 10.1007/s11538-013-9898-2
Mehta S, Gaur J (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152
doi: 10.1080/07388550500248571
Merkey BV, Rittmann BE, Chopp DL (2009) Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms. J Theor Biol 259(4):670–683
doi: 10.1016/j.jtbi.2009.05.010
Milferstedt K, Kuo-Dahab WC, Butler CS, Hamelin J, Abouhend AS, Stauch-White K, McNair A, Watt C, Carbajal-González BI, Dolan S et al (2017) The importance of filamentous cyanobacteria in the development of oxygenic photogranules. Sci Rep 7(1):1–15
doi: 10.1038/s41598-017-16614-9
Muñoz R, Alvarez MT, Muñoz A, Terrazas E, Guieysse B, Mattiasson B (2006) Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63(6):903–911
doi: 10.1016/j.chemosphere.2005.09.062
Muñoz Sierra J, Picioreanu C, Van Loosdrecht M (2014) Modeling phototrophic biofilms in a plug-flow reactor. Water Sci Technol 70(7):1261–1270
doi: 10.2166/wst.2014.368
Naveed S, Li C, Lu X, Chen S, Yin B, Zhang C, Ge Y (2019) Microalgal extracellular polymeric substances and their interactions with metal (loid) s: a review. Crit Rev Environ Sci Technol 49(19):1769–1802
doi: 10.1080/10643389.2019.1583052
Odriozola M, López I, Borzacconi L (2016) Modeling granule development and reactor performance on anaerobic granular sludge reactors. J Environ Chem Eng 4(2):1615–1628
doi: 10.1016/j.jece.2016.01.040
Papirio S, Frunzo L, Mattei MR, Ferraro A, Race M, D’Acunto B, Pirozzi F, Esposito G (2017) Heavy metal removal from wastewaters by biosorption: mechanisms and modeling, 25–63
Park D, Yun Y-S, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15(1):86–102
doi: 10.1007/s12257-009-0199-4
Rahman KA, Sudarsan R, Eberl HJ (2015) A mixed-culture biofilm model with cross-diffusion. Bull Math Biol 77(11):2086–2124
doi: 10.1007/s11538-015-0117-1
Rani MJ, Hemambika B, Hemapriya J, Kannan VR (2010) Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. Afr J Environ Sci Technol 4(2)
Rollet C, Gal L, Guzzo J (2009) Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in pseudomonas aeruginosa. FEMS Microbiol Lett 290(2):135–142
doi: 10.1111/j.1574-6968.2008.01415.x
Rumbaugh KP, Sauer K (2020) Biofilm dispersion. Nat Rev Microbiol 18(10):571–586
doi: 10.1038/s41579-020-0385-0
Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397
doi: 10.1016/j.tim.2006.07.001
Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7(2):137–150
doi: 10.4319/lo.1962.7.2.0137
Tenore A, Russo F, Mattei M, D’Acunto B, Collins G, Frunzo L (2021a) Multiscale modelling of de novo anaerobic granulation. Bull Math Biol 83:122
Tenore A, Mattei M, Frunzo L (2021b) Modelling the ecology of phototrophic-heterotrophic biofilms. Commun Nonlinear Sci Numer Simul 94:105577
Tenore A, Mattei M, Frunzo L (2021c) Multiscale modelling of oxygenic photogranules. arXiv:2104.12273
Volcke E, Picioreanu C, De Baets B, Van Loosdrecht M (2010) Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor. Environ Technol 31(11):1271–1280
doi: 10.1080/09593331003702746
Wanner O, Gujer W (1986) A multispecies biofilm model. Biotechnol Bioeng 28(3):314–328
doi: 10.1002/bit.260280304
Wolf G, Picioreanu C, van Loosdrecht MC (2007) Kinetic modeling of phototrophic biofilms: the phobia model. Biotechnol Bioeng 97(5):1064–1079
doi: 10.1002/bit.21306
Yang J, Cao J, Xing G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae chlorella minutissima utex2341. Biores Technol 175:537–544
doi: 10.1016/j.biortech.2014.10.124
Yang X, Zhao Z, Yu Y, Shimizu K, Zhang Z, Lei Z, Lee D-J (2020) Enhanced biosorption of Cr (VI) from synthetic wastewater using algal-bacterial aerobic granular sludge: batch experiments, kinetics and mechanisms. Sep Purif Technol 251:117323
doi: 10.1016/j.seppur.2020.117323
Yang X, Zhao Z, Zhang G, Hirayama S, Van Nguyen B, Lei Z, Shimizu K, Zhang Z (2021) Insight into Cr (VI) biosorption onto algal-bacterial granular sludge: Cr (VI) bioreduction and its intracellular accumulation in addition to the effects of environmental factors. J Hazard Mater 414:125479
doi: 10.1016/j.jhazmat.2021.125479