A two-staged adsorption/thermal desorption GC/MS online system for monitoring volatile organic compounds.
GC/MS
Heart cutting
Online monitoring
Thermoelectric coolers
Two-staged adsorption/thermal desorption
VOCs
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
22 Jun 2023
22 Jun 2023
Historique:
received:
12
09
2022
accepted:
27
05
2023
medline:
26
6
2023
pubmed:
22
6
2023
entrez:
22
6
2023
Statut:
epublish
Résumé
Real-time online monitoring of volatile organic compounds (VOCs) in ambient air is crucial for timely and effective human health protection. Here, we developed an innovative, automated two-staged adsorption/thermal desorption gas chromatography/mass spectrometry (GC/MS) system for real-time online monitoring of 117 regulated volatile organic compounds (VOCs). This system comprised a sampling unit, water management trap, two-staged adsorption/thermal desorption unit, thermoelectric coolers (TECs), and a commercial GC/MS system. By implementing a micro-purge-and-trap (MP & T) step and a two-staged adsorption/thermal desorption unit, the presence of interfering substances was effectively minimized. The utilization of a heart-cutting GC, combined with a single MS detector, facilitated the precise separation and detection of 117 C
Identifiants
pubmed: 37347444
doi: 10.1007/s10661-023-11431-2
pii: 10.1007/s10661-023-11431-2
doi:
Substances chimiques
Volatile Organic Compounds
0
Gases
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
869Subventions
Organisme : National Natural Science Foundation of China
ID : No. 21777131 & No. 21677117
Organisme : National Natural Science Foundation of China
ID : No. 21777131 & No. 21677117
Organisme : National Natural Science Foundation of China
ID : No. 21777131 & No. 21677117
Organisme : Science and Technology Department Foundation of Sichuan Province
ID : No. 2017GZ0388 & No. 2018GZ040
Organisme : Science and Technology Department Foundation of Sichuan Province
ID : No. 2017GZ0388 & No. 2018GZ040
Organisme : Science and Technology Department Foundation of Sichuan Province
ID : No. 2017GZ0388 & No. 2018GZ040
Organisme : Institutional Research Fund of Chengdu Agricultural College
ID : No.23ZR204
Organisme : Institutional Research Fund of Chengdu Agricultural College
ID : No.23ZR204
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Alonso, L., Durana, N., Navazo, M., Garcia, J. A., & Ilardia, J. L. (1999). Determination of volatile organic compounds in the atmosphere using two complementary analysis techniques. Journal of the Air & Waste Management Association, 49, 916–924.
doi: 10.1080/10473289.1999.10463871
Bari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of the Total Environment, 631–632, 627–640.
doi: 10.1016/j.scitotenv.2018.03.023
Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P. M., Soukoulis, C., Aprea, E., Märk, T. D., Gasperi, F., & Biasioli, F. (2012). On Quantitative Determination of Volatile Organic Compound Concentrations Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry. Environmental Science & Technology, 46, 2283–2290.
doi: 10.1021/es203985t
Chang, C.-C., Wang, J.-L., Chang, C.-Y., Liang, M.-C., & Lin, M.-R. (2016). Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies. Chemosphere, 144, 484–492.
doi: 10.1016/j.chemosphere.2015.08.028
Chen, S., Xu, Z., Liu, P., Zhuang, Y., Jiang, M., Zhang, X., Han, Z., Liu, Y., & Chen, X. (2022). Assessment of volatile organic compound emissions from pesticides in China and their contribution to ozone formation potential. Environmental Monitoring and Assessment, 194, 737.
doi: 10.1007/s10661-022-10423-y
Colman Lerner, J. E., Sanchez, E. Y., Sambeth, J. E., & Porta, A. A. (2012). Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmospheric Environment, 55, 440–447.
doi: 10.1016/j.atmosenv.2012.03.041
de Blas, M., Navazo, M., Alonso, L., Durana, N., & Iza, J. (2011). Automatic on-line monitoring of atmospheric volatile organic compounds: Gas chromatography–mass spectrometry and gas chromatography–flame ionization detection as complementary systems. Science of the Total Environment, 409, 5459–5469.
doi: 10.1016/j.scitotenv.2011.08.072
Detournay, A., Sauvage, S., Locoge, N., Gaudion, V., Leonardis, T., Fronval, I., Kaluzny, P., & Galloo, J.-C. (2011). Development of a sampling method for the simultaneous monitoring of straight-chain alkanes, straight-chain saturated carbonyl compounds and monoterpenes in remote areas. Journal of Environmental Monitoring, 13, 983–990.
doi: 10.1039/c0em00354a
Durmusoglu, E., Taspinar, F., & Karademir, A. (2010). Health risk assessment of BTEX emissions in the landfill environment. Journal of Hazardous Materials, 176, 870–877.
doi: 10.1016/j.jhazmat.2009.11.117
Gawryś, M., Fastyn, P., Gawłowski, J., Gierczak, T., & Niedzielski, J. (2001). Prevention of water vapour adsorption by carbon molecular sieves in sampling humid gases. Journal of Chromatography A, 933, 107–116.
doi: 10.1016/S0021-9673(01)01250-X
Król, S., Zabiegała, B., & Namieśnik, J. (2010a). Monitoring VOCs in atmospheric air I. On-line gas analyzers. TrAC Trends in Analytical Chemistry, 29, 1092–1100.
doi: 10.1016/j.trac.2010.05.007
Król, S., Zabiegała, B., & Namieśnik, J. (2010b). Monitoring VOCs in atmospheric air II. Sample collection and preparation. TrAC Trends in Analytical Chemistry, 29, 1101–1112.
doi: 10.1016/j.trac.2010.05.010
Kuntasal, Ö. O., Karman, D., Wang, D., Tuncel, S. G., & Tuncel, G. (2005). Determination of volatile organic compounds in different microenvironments by multibed adsorption and short-path thermal desorption followed by gas chromatographic–mass spectrometric analysis. Journal of Chromatography A, 1099, 43–54.
doi: 10.1016/j.chroma.2005.08.093
Li, R., Xu, A., Zhao, Y., Chang, H., Li, X., & Lin, G. (2022). Genetic algorithm (GA) - Artificial neural network (ANN) modeling for the emission rates of toxic volatile organic compounds (VOCs) emitted from landfill working surface. Journal of Environmental Management, 305, 114433.
doi: 10.1016/j.jenvman.2022.114433
Liu, C., Mu, Y., Zhang, C., Zhang, Z., Zhang, Y., Liu, J., Sheng, J., & Quan, J. (2016). Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2–C12 hydrocarbons. Journal of Chromatography A, 1427, 134–141.
doi: 10.1016/j.chroma.2015.11.060
Liu, R., Chen, J., Li, G., Wang, X., & An, T. (2019). Cutting down on the ozone and SOA formation as well as health risks of VOCs emitted from e-waste dismantlement by integration technique. Journal of Environmental Management, 249, 107755.
doi: 10.1016/j.jenvman.2018.07.034
Liu, Z., Huang, Z., Yan, Y., Liu, T., Lv, T., Chen, Y., Yang, J., Die, Q., Zhao, Y., & Huang, Q. (2022). Characterizing the emission behaviors of cumulative VOCs from automotive solvent-based paint sludge. Journal of Environmental Management, 317, 115369.
doi: 10.1016/j.jenvman.2022.115369
Mahilang, M., Deb, M. K., & Pervez, S. (2021). Biogenic secondary organic aerosols: A review on formation mechanism, analytical challenges and environmental impacts. Chemosphere, 262, 127771.
doi: 10.1016/j.chemosphere.2020.127771
Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R., Mühle, J., & Simmonds, P. G. (2008). Medusa: A Sample Preconcentration and GC/MS Detector System for in Situ Measurements of Atmospheric Trace Halocarbons, Hydrocarbons, and Sulfur Compounds. Analytical Chemistry, 80, 1536–1545.
doi: 10.1021/ac702084k
Perez-Rial, D., Lopez-Mahia, P., & Tauler, R. (2010). Investigation of the source composition and temporal distribution of volatile organic compounds (VOCs) in a suburban area of the northwest of Spain using chemometric methods. Atmospheric Environment, 44, 5122–5132.
doi: 10.1016/j.atmosenv.2010.09.005
Sanchez, J. M., & Sacks, R. D. (2003). On-Line Multibed Sorption Trap and Injector for the GC Analysis of Organic Vapors in Large-Volume Air Samples. Analytical Chemistry, 75, 978–985.
doi: 10.1021/ac020575+
Sanchez, J. M., & Sacks, R. D. (2006). Development of a Multibed Sorption Trap, Comprehensive Two-Dimensional Gas Chromatography, and Time-of-Flight Mass Spectrometry System for the Analysis of Volatile Organic Compounds in Human Breath. Analytical Chemistry, 78, 3046–3054.
doi: 10.1021/ac060053k
Seeley, J. V. (2012). Recent advances in flow-controlled multidimensional gas chromatography. Journal of Chromatography A, 1255, 24–37.
doi: 10.1016/j.chroma.2012.01.027
Sive, B. C., Zhou, Y., Troop, D., Wang, Y., Little, W. C., Wingenter, O. W., Russo, R. S., Varner, R. K., & Talbot, R. (2005). Development of a Cryogen-Free Concentration System for Measurements of Volatile Organic Compounds. Analytical Chemistry, 77, 6989–6998.
doi: 10.1021/ac0506231
Su, Y.-C., Chang, C.-C., & Wang, J.-L. (2008). Construction of an automated gas chromatography/mass spectrometry system for the analysis of ambient volatile organic compounds with on-line internal standard calibration. Journal of Chromatography A, 1201, 134–140.
doi: 10.1016/j.chroma.2008.03.071
Su, Y.-C., Chen, S.-P., Tong, Y.-H., Fan, C.-L., Chen, W.-H., Wang, J.-L., & Chang, J. S. (2016). Assessment of regional influence from a petrochemical complex by modeling and fingerprint analysis of volatile organic compounds (VOCs). Atmospheric Environment, 141, 394–407.
doi: 10.1016/j.atmosenv.2016.07.006
Valencia-Ortiz, M., Marzougui, A., Zhang, C., Bali, S., Odubiyi, S., Sathuvalli, V., Bosque-Pérez, N. A., Pumphrey, M. O., & Sankaran, S. (2022). Biogenic VOCs emission profiles associated with plant-pest interaction for phenotyping applications. Sensors, 22, 4870.
doi: 10.3390/s22134870
Wai-mei Sin, D., Wong, Y.-C., Sham, W.-C., & Wang, D. (2001). Development of an analytical technique and stability evaluation of 143 C3–C12 volatile organic compounds in Summa® canisters by gas chromatography–mass spectrometry. The Analyst, 126, 310–321.
doi: 10.1039/b008746g
Wang, J.-L., Din, G.-Z., & Chan, C.-C. (2004). Validation of a laboratory-constructed automated gas chromatograph for the measurement of ozone precursors through comparison with a commercial analogy. Journal of Chromatography A, 1027, 11–18.
doi: 10.1016/j.chroma.2003.08.099
Wang, C.-H., Chiang, S.-W., & Wang, J.-L. (2010). Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimensional gas chromatography. Journal of Chromatography A, 1217, 353–358.
doi: 10.1016/j.chroma.2009.11.053
Wang, J.-L., Chang, C.-C., & Lee, K.-Z. (2012). In-line sampling with gas chromatography–mass spectrometry to monitor ambient volatile organic compounds. Journal of Chromatography A, 1248, 161–168.
doi: 10.1016/j.chroma.2012.05.091
Wang, M., Zeng, L., Lu, S., Shao, M., Liu, X., Yu, X., Chen, W., Yuan, B., Zhang, Q., Hu, M., & Zhang, Z. (2014). Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds. Analytical Methods, 6, 9424–9434.
doi: 10.1039/C4AY01855A
Woolfenden, E. (2010). Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air: Part 1: Sorbent-based air monitoring options. Journal of Chromatography A, 1217, 2674–2684.
doi: 10.1016/j.chroma.2009.12.042
Yuan, C.-S., Cheng, W.-H., Su, S.-Y., & Chen, W.-H. (2021). Field measurement of spatiotemporal distributions of ambient concentrations of volatile organic compounds around a high-tech industrial park using a drone. Atmospheric Pollution Research, 12, 101187.
doi: 10.1016/j.apr.2021.101187
Yuan, C.-S., Cheng, W.-H., & Huang, H.-Y. (2022). Spatiotemporal distribution characteristics and potential sources of VOCs at an industrial harbor city in southern Taiwan: Three-year VOCs monitoring data analysis. Journal of Environmental Management, 303, 114259.
doi: 10.1016/j.jenvman.2021.114259