A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU.
barrier properties
biodegradable plastics
food packaging
mechanical strength
sustainability
Journal
Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
revised:
22
05
2023
received:
12
12
2022
accepted:
04
06
2023
medline:
13
9
2023
pubmed:
23
6
2023
entrez:
23
6
2023
Statut:
ppublish
Résumé
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Identifiants
pubmed: 37350102
doi: 10.1111/1541-4337.13202
doi:
Substances chimiques
Polyesters
0
Cellulose
9004-34-6
Plastics
0
Types de publication
Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4147-4185Informations de copyright
© 2023 Institute of Food Technologists®.
Références
Agarwal, S. (2021). Major factors affecting the characteristics of starch based biopolymer films. European Polymer Journal, 160, 110788. https://doi.org/10.1016/J.EURPOLYMJ.2021.110788
Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43(6), 837-842. https://doi.org/10.1016/j.lwt.2010.01.021
Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M. (2014). Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control, 36(1), 1-7. https://doi.org/10.1016/j.foodcont.2013.07.037
Alfaro, A. T., Balbinot, E., Weber, C. I., Tonial, I. B., & Machado-Lunkes, A. (2015). Fish gelatin: Characteristics, functional properties, applications and future potentials. Food Engineering Reviews, 7(1), 33-44. https://doi.org/10.1007/s12393-014-9096-5
Ali, A., Zahid, N., Manickam, S., Siddiqui, Y., & Alderson, P. G. (2014). Double layer coatings: A new technique for maintaining physico-chemical characteristics and antioxidant properties of dragon fruit during storage. Food and Bioprocess Technology, 7(8), 2366-2374. https://doi.org/10.1007/S11947-013-1224-3/TABLES/1
Ali, S. M., Ahmed, S., Ahmed, H. N., Sharmin, A., & Rahman, R. (2022). Reducing plastic pollutants through catalyzing consumer roles: A novel application of fuzzy total interpretive structural modeling. Journal of Cleaner Production, 335, 130327. https://doi.org/10.1016/J.JCLEPRO.2021.130327
Aliotta, L., Seggiani, M., Lazzeri, A., Gigante, V., & Cinelli, P. (2022). A brief review of poly (butylene succinate) (PBS) and its main copolymers: Synthesis, blends, composites, biodegradability, and applications. Polymers, 14(4), 844. https://doi.org/10.3390/polym14040844
Alizadeh-Sani, M., Mohammadian, E., & McClements, D. J. (2020). Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: Application for preservation of refrigerated meat. Food Chemistry, 322, 126782. https://doi.org/10.1016/J.FOODCHEM.2020.126782
Alparslan, Y., Yapici, H. H., Metin, C., Baygar, T., Günlü, A., & Baygar, T. (2016). Quality assessment of shrimps preserved with orange leaf essential oil incorporated gelatin. LWT - Food Science and Technology, 72, 457-466. https://doi.org/10.1016/j.lwt.2016.04.066
Alves Mauricio, R., Alvares Duarte Bonini Campos, J., & Tieko Nassu, R. (2022). Meat with edible coating: Acceptance, purchase intention and neophobia. Food Research International, 154(January), 111002. https://doi.org/10.1016/j.foodres.2022.111002
Amin, U., Usman, M., Majeed, Y., Rebezov, M., Khayrullin, M., Bobkova, E., Ali, M., Min, I., & Thiruvengadam, M. (2021). Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. International Journal of Biological Macromolecules, 183(May), 2184-2198. https://doi.org/10.1016/j.ijbiomac.2021.05.182
Arcan, İ., Boyacı, D., & Yemenicioğlu, A. (2017). The use of zein and its edible films for the development of food packaging materials. In Reference module in food science. Izmir Institute of Technology. https://doi.org/10.1016/B978-0-08-100596-5.21126-8
Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. https://doi.org/10.1016/j.polymdegradstab.2014.05.010
Azeredo, H., Durango Villadiego, A., Garruti, D., Brito, E., Pinto, G., Faria, J., Bruno, L., Mattoso, L., Bastos, M., Silveira, M., Rosa, M., Wurlitzer, N., Soares, N., Rodrigues, P., Azeredo, R., Cruz, R., Geraldine, R., Furtado, R., & da Silva, W. (2012). Fundamentos de estabilidade de alimentos.
Bahmid, N. A., & dan Akhiruddin Maddu, K. S. (2015). Pengaruh ukuran serat selulosa asetat dan penambahan dietilen glikol (deg) terhadap sifat fisik dan mekanik bioplastik. Journal of Agroindustrial Technology, 24(3), 9125.
Bahmid, N. A., Dekker, M., Fogliano, V., & Heising, J. (2021a). Modelling the effect of food composition on antimicrobial compound absorption and degradation in an active packaging. Journal of Food Engineering, 300, 110539. https://doi.org/10.1016/J.JFOODENG.2021.110539
Bahmid, N. A., Dekker, M., Fogliano, V., & Heising, J. (2021b). Development of a moisture-activated antimicrobial film containing ground mustard seeds and its application on meat in active packaging system. Food Packaging and Shelf Life, 30, 100753. https://doi.org/10.1016/J.FPSL.2021.100753
Bahram, S., Rezaie, M., Soltani, M., Kamali, A., Abdollahi, M., Khezri Ahmadabad, M., & Nemati, M. (2016). Effect of whey protein concentrate coating cinamon oil on quality and shelf life of refrigerated Beluga Sturegeon (Huso huso). Journal of Food Quality, 39(6), 743-749. https://doi.org/10.1111/jfq.12227
Barkoula, N. M., Alcock, B., Cabrera, N. O., & Peijs, T. (2008). Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers and Polymer Composites, 16(2), 101-113. https://doi.org/10.1002/pc
Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Fernández-Prior, Á., & Fernández-Bolaños, J. (2019). Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Science, 148, 213-218. https://doi.org/10.1016/j.meatsci.2018.07.003
Bhuwal, A. K., Singh, G., Aggarwal, N. K., Goyal, V., & Yadav, A. (2013). Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard Industry Wastes. International Journal of Biomaterials, 2013, 752821. https://doi.org/10.1155/2013/752821
Brandelli, A., Brum, L. F. W., & dos Santos, J. H. Z. (2017). Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 15(2), 193-204. https://doi.org/10.1007/S10311-017-0621-7/FIGURES/2
Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S., Cristofaro, F., Visai, L., Jiménez, A., & Kenny, J. M. (2017). Functional properties of plasticized bio-based poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) films for active food packaging. Food and Bioprocess Technology, 10, 770-780. https://doi.org/10.1007/s11947-016-1846-3
Busolo, M. A., & Lagaron, J. M. (2013). Antimicrobial biocomposites of melt-compounded polylactide films containing silver-based engineered clays. Journal of Plastic Film and Sheeting, 29(3), 290-305. https://doi.org/10.1177/8756087913478601
Bustos, C. R. O., Alberti, R. F. V., & Matiacevich, S. B. (2015). Edible antimicrobial films based on microencapsulated lemongrass oil. Journal of Food Science and Technology, 53, 832-83. https://doi.org/10.1007/s13197-015-2027-5
Calva-Estrada, S. J., Jiménez-Fernández, M., & Lugo-Cervantes, E. (2019). Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Engineering Reviews, 11, 78-92. https://doi.org/10.1007/s12393-019-09189-w
Castro-Rosas, J., Cruz-Galvez, A. M., Gomez-Aldapa, C. A., Falfan-Cortes, R. N., Guzman-Ortiz, F. A., & Rodríguez-Marín, M. L. (2016). Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: A review. International Journal of Food Science and Technology, 51(9), 1967-1978. https://doi.org/10.1111/ijfs.13183
Catarino, M. D., Alves-Silva, J. M., Fernandes, R. P., Gonçalves, M. J., Salgueiro, L. R., Henriques, M. F., & Cardoso, S. M. (2017). Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control, 80, 273-280. https://doi.org/10.1016/j.foodcont.2017.03.054
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry and Engineering, 8(9), 3494-3511. https://doi.org/10.1021/ACSSUSCHEMENG.9B06635/ASSET/IMAGES/LARGE/SC9B06635_0009.JPEG
Chavoshizadeh, S., Pirsa, S., & Mohtarami, F. (2020). Sesame oil oxidation control by active and smart packaging system using wheat gluten/chlorophyll film to increase shelf life and detecting expiration date. European Journal of Lipid Science and Technology, 122(3), 1-39. https://doi.org/10.1002/ejlt.201900385
Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of protein-based films and coatings for food packaging: A Review. Polymers, 11(12), 2039. https://doi.org/10.3390/POLYM11122039
Choi, I., Lee, S. E., Chang, Y., Lacroix, M., & Han, J. (2018). Effect of oxidized phenolic compounds on cross-linking and properties of biodegradable active packaging film composed of turmeric and gelatin. LWT - Food Science and Technology, 93, 427-433. https://doi.org/10.1016/J.LWT.2018.03.065
Chollakup, R., Pongburoos, S., Boonsong, W., Khanoonkon, N., Kongsin, K., Sothornvit, R., Sukyai, P., Sukatta, U., & Harnkarnsujarit, N. (2020). Antioxidant and antibacterial activities of cassava starch and whey protein blend films containing rambutan peel extract and cinnamon oil for active packaging. LWT - Food Science and Technology, 130(February), 109573. https://doi.org/10.1016/j.lwt.2020.109573
Costa, S. M., Ferreira, D. P., Teixeira, P., Ballesteros, L. F., Teixeira, J. A., & Fangueiro, R. (2021). Active natural-based films for food packaging applications: The combined effect of chitosan and nanocellulose. International Journal of Biological Macromolecules, 177, 241-251. https://doi.org/10.1016/J.IJBIOMAC.2021.02.105
da Costa Reis, D. C., Lemos Morais, A. C., de Carvalho, L. H., Alves, T. S., & Barbosa, R. (2016). Assessment of the morphology and interaction of PHBV/clay bionanocomposites: Uses as food packaging. Macromolecular Symposia, 367(1), 113-118. https://doi.org/10.1002/masy.201500143
da Silva Filipini, G., Romani, V. P., & Guimarães Martins, V. (2020). Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocolloids, 109, 106139. https://doi.org/10.1016/J.FOODHYD.2020.106139
de Alvarenga, E. S., Pereira de Oliveira, C., & Roberto Bellato, C. (2010). An approach to understanding the deacetylation degree of chitosan. Carbohydrate Polymers, 80(4), 1155-1160. https://doi.org/10.1016/J.CARBPOL.2010.01.037
de França, J. O. C., da Silva Valadares, D., Paiva, M. F., Dias, S. C. L., & Dias, J. A. (2022). Polymers based on PLA from synthesis using D,L-lactic acid (or racemic lactide) and some biomedical applications: A short review. Polymers, 14(12), 2317. https://doi.org/10.3390/POLYM14122317
Désiré, A. Y., Charlemagne, N., Roger, K. B., Souleymane, C., Georges, A. N. G., Marianne, S., Achille, T. F., Abrogoua, U. N., & Abidjan, B. P. (2018). Effect of glycerol, peanut oil and soybean lecithin contents on the properties of biodegradable film of improved cassava starches from Côte d' Ivoire. International Journal of Environment, Agriculture and Biotechnology, 4, 1432-1440. https://10.22161/ijeab/3.4.39
Díaz-montes, E., & Castro-muñoz, R. (2021). Trends in chitosan as a primary biopolymer for functional films and coatings manufacture for food and natural products. Polymers, 13(5), 767. https://doi.org/10.3390/POLYM13050767
Diani, J., & Gall, K. (2006). Finite strain 3D thermoviscoelastic constitutive model. Society, 46, 1-10. https://doi.org/10.1002/pen
Didone, M., Saxena, P., Brilhuis-Meijer, E., Tosello, G., Bissacco, G., Mcaloone, T. C., Pigosso, D. C. A., & Howard, T. J. (2017). Moulded pulp manufacturing: Overview and prospects for the process technology. Packaging Technology and Science, 30(6), 231-249. https://doi.org/10.1002/PTS.2289
Dmitriev, R. I., & Papkovsky, D. B. (2018). Quenched-phosphorescence detection of molecular oxygen: Applications in life sciences. In Detection science (p. online (xvi, 368 sidor)). The Royal Society of Chemistry. https://doi.org/10.1039/9781788013451
Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Bursać Kovačević, D., Pateiro, M., Santos, E. M., & Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93-101. https://doi.org/10.1016/j.foodres.2018.06.073
Dorigato, A. (2021). Recycling of polymer blends. Advanced Industrial and Engineering Polymer Research, 4(2), 53-69. https://doi.org/10.1016/J.AIEPR.2021.02.005
Duan, J., Jiang, Y., Cherian, G., & Zhao, Y. (2010). Effect of combined chitosan-krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates) fillets. Food Chemistry, 122(4), 1035-1042. https://doi.org/10.1016/j.foodchem.2010.03.065
Dulta, K., Koşarsoy Ağçeli, G., Thakur, A., Singh, S., Chauhan, P., & Chauhan, P. K. (2022). Development of alginate-chitosan based coating enriched with ZnO nanoparticles for increasing the shelf life of orange fruits (Citrus sinensis L.). Journal of Polymers and the Environment, 30(8), 3293-3306. https://doi.org/10.1007/S10924-022-02411-7/TABLES/4
Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182. https://doi.org/10.1016/j.foodchem.2008.11.047
Ebrahimian, F., Denayer, J. F. M., & Karimi, K. (2022). Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents. Bioresource Technology, 360, 127609. https://doi.org/10.1016/J.BIORTECH.2022.127609
Ebrahimian, F., Karimi, K., & Kumar, R. (2020). Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste. Waste Management, 116, 40-48. https://doi.org/10.1016/J.WASMAN.2020.07.049
Emadian, S. M., Onay, T. T., & Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526-536. https://doi.org/10.1016/j.wasman.2016.10.006
Emiroǧlu, Z. K., Yemiş, G. P., Coşkun, B. K., & Candoǧan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2), 283-288. https://doi.org/10.1016/j.meatsci.2010.04.016
Erkmen, O., & Barazi, A. O. (2021). General characteristics of edible films. Journal of Food Biotechnology Research, 2(1), 3. https://www.imedpub.com/articles/general-characteristics-of-edible-films.php?aid=22339#5
Erna, K. H., Felicia, W. X. L., Rovina, K., Vonnie, J. M., & Huda, N. (2022). Development of curcumin/rice starch films for sensitive detection of hypoxanthine in chicken and fish meat. Carbohydrate Polymer Technologies and Applications, 3, 100189. https://doi.org/10.1016/J.CARPTA.2022.100189
Plastics Europe. (2020). Plastics-The facts 2019. An analysis of European plastics production, demand and waste data. Plastics Europe.
Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L. A., & Kenny, J. M. (2012). Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers, 87(2), 1596-1605. https://doi.org/10.1016/j.carbpol.2011.09.066
Fortunati, E., Peltzer, M., Armentano, I., Jiménez, A., & Kenny, J. M. (2013). Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering, 118(1), 117-124. https://doi.org/10.1016/j.jfoodeng.2013.03.025
Gallego-Schmid, A., Mendoza, J. M. F., & Azapagic, A. (2019). Environmental impacts of takeaway food containers. Journal of Cleaner Production, 211, 417-427. https://doi.org/10.1016/J.JCLEPRO.2018.11.220
Gueguen, J., Viroben, G., Noireaux, P., & Subirade, M. (1998). Influence of plasticizers and treatments on the properties of films from pea proteins. Industrial Crops and Products, 7(2-3), 149-157. https://doi.org/10.1016/S0926-6690(97)00043-5
Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., & Gontard, N. (2018). The next generation of sustainable food packaging to preserve our environment in a circular economy context. Frontiers in Nutrition, 5(December), 1-13. https://doi.org/10.3389/fnut.2018.00121
Guo, Q., Yuan, Y., He, M., Zhang, X., Li, L., Zhang, Y., & Li, B. (2023). Development of a multifunctional food packaging for meat products by incorporating carboxylated cellulose nanocrystal and beetroot extract into sodium alginate films. Food Chemistry, 415, 135799. https://doi.org/10.1016/J.FOODCHEM.2023.135799
Hanani, N., A, Z., Reich, F., Tolksdorf, T., Siemen, H., & Bandick, N. (2022). Monitoring the effect of active packaging films with silver-kaolinite using different packaging systems on the quality of beef meat. Heliyon, 8(10), e11019. https://doi.org/10.1016/J.HELIYON.2022.E11019
Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095-1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
Hazarika, K. K., Konwar, A., Borah, A., Saikia, A., Barman, P., & Hazarika, S. (2022). Cellulose nanofiber mediated natural dye based biodegradable bag with freshness indicator for packaging of meat and fish. Carbohydrate Polymers, 300, 120241. https://doi.org/10.1016/J.CARBPOL.2022.120241
Hazarika, K. K., Konwar, A., Borah, A., Saikia, A., Barman, P., & Hazarika, S. (2023). Cellulose nanofiber mediated natural dye based biodegradable bag with freshness indicator for packaging of meat and fish. Carbohydrate Polymers, 300, 120241. https://doi.org/10.1016/J.CARBPOL.2022.120241
Heidary Vinche, M., Asachi, R., Zamani, A., & Karimi, K. (2013). Ethanol and chitosan production from wheat hydrolysate by Mucor hiemalis. Journal of Chemical Technology & Biotechnology, 88(2), 255-260. https://doi.org/10.1002/JCTB.3822
Hernández-García, E., Vargas, M., & Chiralt, A. (2022). Starch-polyester bilayer films with phenolic acids for pork meat preservation. Food Chemistry, 385, 132650. https://doi.org/10.1016/J.FOODCHEM.2022.132650
Homez-Jara, A., Daza, L. D., Aguirre, D. M., Muñoz, J. A., Solanilla, J. F., & Váquiro, H. A. (2018). Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. International Journal of Biological Macromolecules, 113, 1233-1240. https://doi.org/10.1016/j.ijbiomac.2018.03.057
İlaslan, K., Tornuk, F., & Durak, M. Z. (2022). Development of polycaprolactone biodegradable films reinforced with silver-doped organoclay and effect on the microbiological quality of ground beef meat. Journal of Food Processing and Preservation, 46(10), e16862. https://doi.org/10.1111/JFPP.16862
Jamróz, E., Tkaczewska, J., Kopeć, M., & Cholewa-Wójcik, A. (2022). Shelf-life extension of salmon using active total biodegradable packaging with tea ground waste and furcellaran-CMC double-layered films. Food Chemistry, 383, 132425. https://doi.org/10.1016/J.FOODCHEM.2022.132425
Jang, J. H., Kang, H. J., Adedeji, O. E., Kim, G. Y., Lee, J. K., Kim, D. H., & Jung, Y. H. (2023). Development of a pH indicator for monitoring the freshness of minced pork using a cellulose nanofiber. Food Chemistry, 403, 134366. https://doi.org/10.1016/J.FOODCHEM.2022.134366
Jarerat, A., & Tokiwa, Y. (2001). Degradation of poly(l-lactide) by a fungus. Macromolecular Bioscience, 1, 136-140. https://doi.org/10.1002/1616-5195(20010601)1:4
Ji, M., Li, J., Li, F., Wang, X., Man, J., Li, J., Zhang, C., & Peng, S. (2022). A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging. Carbohydrate Polymers, 281, 119078. https://doi.org/10.1016/J.CARBPOL.2021.119078
Jiang, Y., Lan, W., Sameen, D. E., Ahmed, S., Qin, W., Zhang, Q., Chen, H., Dai, J., He, L., & Liu, Y. (2020). Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging. International Journal of Biological Macromolecules, 160, 340-351. https://doi.org/10.1016/J.IJBIOMAC.2020.05.202
Jost, V., Kobsik, K., Schmid, M., & Noller, K. (2014). Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydrate Polymers, 110, 309-319. https://doi.org/10.1016/J.CARBPOL.2014.03.096
Kalia, V. C. (2019). Biotechnological applications of polyhydroxyalkanoates (pp. 1-420). Springer Singapore. https://doi.org/10.1007/978-981-13-3759-8
Kamkar, A., Molaee-aghaee, E., Khanjari, A., Akhondzadeh-basti, A., Noudoost, B., Shariatifar, N., Alizadeh Sani, M., & Soleimani, M. (2021). Nanocomposite active packaging based on chitosan biopolymer loaded with nano-liposomal essential oil: Its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet. International Journal of Food Microbiology, 342, 109071. https://doi.org/10.1016/j.ijfoodmicro.2021.109071
Karamanlioglu, M., Houlden, A., & Robson, G. D. (2014). Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost. International Biodeterioration & Biodegradation, 95(PB), 301-310. https://doi.org/10.1016/J.IBIOD.2014.09.006
Katekhong, W., Wongphan, P., Klinmalai, P., & Harnkarnsujarit, N. (2022). Thermoplastic starch blown films functionalized by plasticized nitrite blended with PBAT for superior oxygen barrier and active biodegradable meat packaging. Food Chemistry, 374, 131709. https://doi.org/10.1016/J.FOODCHEM.2021.131709
Kaya, E., Kahyaoglu, L. N., & Sumnu, G. (2022). Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat. International Journal of Biological Macromolecules, 221, 536-546. https://doi.org/10.1016/J.IJBIOMAC.2022.09.025
Keykhosravy, K., Khanzadi, S., Hashemi, M., & Azizzadeh, M. (2020). Chitosan-loaded nanoemulsion containing Zataria multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. International Journal of Biological Macromolecules, 150, 904-913. https://doi.org/10.1016/j.ijbiomac.2020.02.092
Khare, A. K., Abraham, R. J. J., Rao, V. A., & Babu, R. N. (2016). Utilization of carrageenan, citric acid and cinnamon oil as an edible coating of chicken fillets to prolong its shelf life under refrigeration conditions. Veterinary World, 9(2), 166-175. https://doi.org/10.14202/vetworld.2016.166-175
Khumkomgool, A., Saneluksana, T., & Harnkarnsujarit, N. (2020). Active meat packaging from thermoplastic cassava starch containing sappan and cinnamon herbal extracts via LLDPE blown-film extrusion. Food Packaging and Shelf Life, 26, 100557. https://doi.org/10.1016/J.FPSL.2020.100557
Kim, S., Baek, S., & Song, K. B. (2018). Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract. Food Packaging and Shelf Life, 18(November), 157-163. https://doi.org/10.1016/j.fpsl.2018.11.008
Kowsalya, E., MosaChristas, K., Balashanmugam, P., Tamil Selvi, A., & Jaquline Chinna Rani, I. (2019). Biocompatible silver nanoparticles/poly(vinyl alcohol) electrospun nanofibers for potential antimicrobial food packaging applications. Food Packaging and Shelf Life, 21, 100379. https://doi.org/10.1016/J.FPSL.2019.100379
Król, Z., Kulig, D., Marycz, K., Zimoch-Korzycka, A., & Jarmoluk, A. (2017). The effects of using sodium alginate hydrosols treated with direct electric current as coatings for sausages. Polymers, 9(11), 602. https://doi.org/10.3390/polym9110602
Kulawik, P., Jamróz, E., & Özogul, F. (2019). Chitosan for seafood processing and preservation. Sustainable Agriculture Reviews, 36, 45-79. https://doi.org/10.1007/978-3-030-16581-9_2
Kumar, S., Mukherjee, A., & Dutta, J. (2020). Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science and Technology, 97(January), 196-209. https://doi.org/10.1016/j.tifs.2020.01.002
Kumar Thiagamani, S. M., Krishnasamy, S., & Siengchin, S. (2019). Challenges of biodegradable polymers: An environmental perspective. Applied Science and Engineering Progress, 12(3), 149. https://doi.org/10.14416/j.asep.2019.03.002
Lazim, N. A. M., Salehudin, M. H., & Muhamad, I. I. (2021). Cellulose nanofibers/polylactic acid based biocomposites for packaging applications. In Biopolymers and biocomposites from agro-waste for packaging applications (pp. 101-112). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819953-4.00011-2
Leelaphiwat, P., Pechprankan, C., Siripho, P., Bumbudsanpharoke, N., & Harnkarnsujarit, N. (2022). Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chemistry, 369, 130956. https://doi.org/10.1016/J.FOODCHEM.2021.130956
Leipold, S., & Petit-boix, A. (2018). The circular economy and the bio-based sector - Perspectives of European and German stakeholders. Journal of Cleaner Production, 201, 1125-1137. https://doi.org/10.1016/j.jclepro.2018.08.019
Li, N., Yang, X., & Lin, D. (2022). Development of bacterial cellulose nanofibers/konjac glucomannan-based intelligent films loaded with curcumin for the fresh-keeping and freshness monitoring of fresh beef. Food Packaging and Shelf Life, 34, 100989. https://doi.org/10.1016/J.FPSL.2022.100989
Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. https://doi.org/10.1111/j.1541-4337.2007.00018.x
Liu, D., Zhang, C., Pu, Y., Chen, S., Li, H., & Zhong, Y. (2023). Novel colorimetric films based on polyvinyl alcohol/sodium carboxymethyl cellulose doped with anthocyanins and betacyanins to monitor pork freshness. Food Chemistry, 404, 134426. https://doi.org/10.1016/J.FOODCHEM.2022.134426
Liu, J., Li, K., Chen, Y., Ding, H., Wu, H., Gao, Y., Huang, S., Wu, H., Kong, D., Yang, Z., & Hu, Y. (2022). Active and smart biomass film containing cinnamon oil and curcumin for meat preservation and freshness indicator. Food Hydrocolloids, 133, 107979. https://doi.org/10.1016/J.FOODHYD.2022.107979
Liu, Q., Zhang, M., Bhandari, B., Xu, J., & Yang, C. (2020). Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control, 107, 106771. https://doi.org/10.1016/j.foodcont.2019.106771
Liu, R., Chi, W., Jin, H., Li, J., & Wang, L. (2022). Fabricating κ-carrageenan/carboxymethyl cellulose films encapsulating bromothymol blue fixed rice straw fiber for monitoring meat freshness. Industrial Crops and Products, 187, 115420. https://doi.org/10.1016/J.INDCROP.2022.115420
Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., Li, S., & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532-546. https://doi.org/10.1016/J.TIFS.2021.04.016
Long, H., Gu, J., Jiang, J., Guan, L., Lin, X., Zhang, W., & Hu, C. (2023). Mechanically strong and biodegradable holocellulose films prepared from Camellia oleifera shells. Carbohydrate Polymers, 299, 120189. https://doi.org/10.1016/J.CARBPOL.2022.120189
Luckachan, G. E., & Pillai, C. K. S. (2011). Biodegradable polymers - A review on recent trends and emerging perspectives. Journal of Polymers and the Environment, 19(3), 637-676. https://doi.org/10.1007/s10924-011-0317-1
Ma, J., Ye, G., Jia, S., Ma, H., Jia, D., He, J., Lv, J., Chen, X., Liu, F., Gou, K., & Zeng, R. (2022). Preparation of chitosan/peony (Paeonia suffruticosa Andr.) leaf extract composite film and its application in sustainable active food packaging. International Journal of Biological Macromolecules, 222(Pt B), 2200-2211. https://doi.org/10.1016/J.IJBIOMAC.2022.10.012
Machado, É. F., Favarin, F. R., & Ourique, A. F. (2022). The use of nanostructured films in the development of packaging for meat and meat products: A brief review of the literature. Food Chemistry Advances, 1, 100050. https://doi.org/10.1016/J.FOCHA.2022.100050
Mahato, R. P., Kumar, S., & Singh, P. (2021). Optimization of growth conditions to produce sustainable polyhydroxyalkanoate bioplastic by Pseudomonas aeruginosa EO1. Frontiers in Microbiology, 12, 711588. https://doi.org/10.3389/FMICB.2021.711588
Majdinasab, M., Hosseini, S. M. H., Sepidname, M., Negahdarifar, M., & Li, P. (2018). Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage. Journal of Food Science and Technology, 55(5), 1695-1704. https://doi.org/10.1007/s13197-018-3082-5
Marano, S., Laudadio, E., Minnelli, C., & Stipa, P. (2022). Tailoring the barrier properties of PLA: A state-of-the-art review for food packaging applications. Polymers, 14(8), 1626. https://doi.org/10.3390/POLYM14081626
Marsh, K., & Bugusu, B. (2007). Food packaging - Roles, materials, and environmental issues: Scientific status summary. Journal of Food Science, 72(3), R39-R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x
Martínez-Sanz, M., Villano, M., Oliveira, C., Albuquerque, M. G. E., Majone, M., Reis, M., Lopez-Rubio, A., & Lagaron, J. M. (2014). Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers. New Biotechnology, 31(4), 364-376. https://doi.org/10.1016/j.nbt.2013.06.003
Martín-Lara, M. A., Godoy, V., Quesada, L., Lozano, E. J., & Calero, M. (2021). Environmental status of marine plastic pollution in Spain. Marine Pollution Bulletin, 170, 112677. https://doi.org/10.1016/J.MARPOLBUL.2021.112677
Marzlan, A. A., Muhialdin, B. J., Abedin, N. H. Z., Manshoor, N., Ranjith, F. H., Anzian, A., & Hussin, A. S. M. (2022). Incorporating torch ginger (Etlingera elatior Jack) inflorescence essential oil onto starch-based edible film towards sustainable active packaging for chicken meat. Industrial Crops and Products, 184(May), 115058. https://doi.org/10.1016/j.indcrop.2022.115058
Matrix, P., Lins, L. C., & Bugatti, V. (2018). Ionic liquid as surfactant agent of hydrotalcite: Influence on the final properties of polycaprolactone matrix. Polymers, 10(1), 44. https://doi.org/10.3390/polym10010044
Matthews, C., Moran, F., & Jaiswal, A. K. (2021). A review on European Union's strategy for plastics in a circular economy and its impact on food safety. Journal of Cleaner Production, 283, 125263. https://doi.org/10.1016/J.JCLEPRO.2020.125263
Melro, E., Antunes, F. E., da Silva, G. J., Cruz, I., Ramos, P. E., Carvalho, F., & Alves, L. (2020). Chitosan films in food applications. Tuning film properties by changing acidic dissolution conditions. Polymers, 13(1), 1. https://doi.org/10.3390/POLYM13010001
Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238(February), 116178. https://doi.org/10.1016/j.carbpol.2020.116178
Motelica, L., Ficai, D., Ficai, A., Oprea, O. C., Kaya, D. A., & Andronescu, E. (2020). Biodegradable antimicrobial food packaging: Trends and perspectives. Foods, 9(10), 1438.
Nilsen-Nygaard, J., Fernández, E. N., Radusin, T., Rotabakk, B. T., Sarfraz, J., Sharmin, N., Sivertsvik, M., Sone, I., & Pettersen, M. K. (2021). Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1333-1380. https://doi.org/10.1111/1541-4337.12715
Noori, S., Zeynali, F., & Almasi, H. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 84, 312-320. https://doi.org/10.1016/j.foodcont.2017.08.015
Obadi, M., Qi, Y., & Xu, B. (2023). High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydrate Polymers, 299, 120185. https://doi.org/10.1016/J.CARBPOL.2022.120185
Oussalah, M., Caillet, P., Salmie, P., & Lacroix, M. (2006). Antimicrobial effects of alginate-based film containing. Journal of Food Protection, 69(10), 2364-2369.
Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2007). Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella typhimurium present in bologna and ham. Journal of Food Protection, 70(4), 901-908. https://doi.org/10.4315/0362-028X-70.4.901
Pandey, V. K., Upadhyay, S. N., Niranjan, K., & Mishra, P. K. (2020). Antimicrobial biodegradable chitosan-based composite nano-layers for food packaging. International Journal of Biological Macromolecules, 157, 212-219. https://doi.org/10.1016/J.IJBIOMAC.2020.04.149
Panseri, S., Martino, P. A., Cagnardi, P., Celano, G., Tedesco, D., Castrica, M., Balzaretti, C., & Chiesa, L. M. (2018). Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study. Food Chemistry, 249, 22-29. https://doi.org/10.1016/J.FOODCHEM.2017.12.067
Paterson, M., & Kennedy, J. F. (1990). Chitin and chitosan. Sources, chemistry, biochemistry, physical properties and applications. Carbohydrate Polymers, 13(1), 116-117. https://doi.org/10.1016/0144-8617(90)90056-x
Pérez-Arauz, A. O., Aguilar-Rabiela, A. E., Vargas-Torres, A., Rodríguez-Hernández, A. I., Chavarría-Hernández, N., Vergara-Porras, B., & López-Cuellar, M. R. (2019). Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packaging and Shelf Life, 20, 100297. https://doi.org/10.1016/J.FPSL.2019.01.001
Phothisarattana, D., Wongphan, P., Promhuad, K., Promsorn, J., & Harnkarnsujarit, N. (2022a). Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids and Surfaces B: Biointerfaces, 214, 112472. https://doi.org/10.1016/J.COLSURFB.2022.112472
Phothisarattana, D., Wongphan, P., Promhuad, K., Promsorn, J., & Harnkarnsujarit, N. (2022b). Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids and Surfaces B: Biointerfaces, 214, 112472. https://doi.org/10.1016/J.COLSURFB.2022.112472
Pires, J. R. A., de Souza, V. G. L., & Fernando, A. L. (2018). Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. Food Packaging and Shelf Life, 17, 142-149. https://doi.org/10.1016/J.FPSL.2018.06.011
Priyadarshi, R., Kim, S. M., & Rhim, J. W. (2021). Carboxymethyl cellulose-based multifunctional film combined with zinc oxide nanoparticles and grape seed extract for the preservation of high-fat meat products. Sustainable Materials and Technologies, 29(June), e00325. https://doi.org/10.1016/j.susmat.2021.e00325
Priyadarshi, R., & Rhim, J. W. (2020). Chitosan-based biodegradable functional films forfood packaging applications. Innovative Food Science & Emerging Technologies, 62, 102346. https://doi.org/10.1016/J.IFSET.2020.102346
Puscaselu, R., Gutt, G., & Amariei, S. (2020). The use of edible films based on sodium alginate in meat product packaging: An eco-friendly alternative to conventional plastic materials. Coatings, 10(2), 166. https://doi.org/10.3390/coatings10020166
Qiao, C., Ma, X., Wang, X., & Liu, L. (2021). Structure and properties of chitosan films: Effect of the type of solvent acid. LWT - Food Science and Technology, 135, 109984. https://doi.org/10.1016/J.LWT.2020.109984
Qin, Y. Y., Yang, J. Y., Lu, H. B., Wang, S. S., Yang, J., Yang, X. C., Chai, M., Li, L., & Cao, J. X. (2013). Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties. International Journal of Biological Macromolecules, 61, 312-316. https://doi.org/10.1016/j.ijbiomac.2013.07.018
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, P., Andrady, A., Narayan, N., & Law, L. K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-770.
Raeisi, M., Tabaraei, A., Hashemi, M., & Behnampour, N. (2016). Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. International Journal of Food Microbiology, 238, 139-145. https://doi.org/10.1016/j.ijfoodmicro.2016.08.042
Ran, R., Chen, S., Su, Y., Wang, L., He, S., He, B., Li, C., Wang, C., & Liu, Y. (2022). Preparation of pH-colorimetric films based on soy protein isolate/ZnO nanoparticles and grape-skin red for monitoring pork freshness. Food Control, 137, 108958. https://doi.org/10.1016/J.FOODCONT.2022.108958
Ribeiro Sanches, M. A., Camelo-Silva, C., da Silva Carvalho, C., Rafael de Mello, J., Barroso, N. G., Lopes da Silva Barros, E., Silva, P. P., & Pertuzatti, P. B. (2021). Active packaging with starch, red cabbage extract and sweet whey: Characterization and application in meat. LWT - Food Science and Technology, 135, 110275. https://doi.org/10.1016/J.LWT.2020.110275
Rincón, E., Espinosa, E., Pinillos, M., & Serrano, L. (2023). Bioactive absorbent chitosan aerogels reinforced with bay tree pruning waste nanocellulose with antioxidant properties for burger meat preservation. Polymers, 15(4), 866. https://doi.org/10.3390/POLYM15040866/S1
Romero, E. V., Lim, L. T., Suárez Mahecha, H., & Bohrer, B. M. (2021). The effect of electrospun polycaprolactone nonwovens containing chitosan and propolis extracts on fresh pork packaged in linear low-density polyethylene films. Foods, 10(5), 1110. https://doi.org/10.3390/FOODS10051110
Rui, L., Xie, M., Hu, B., Zhou, L., Yin, D., & Zeng, X. (2017). A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydrate Polymers, 173, 473-481. https://doi.org/10.1016/J.CARBPOL.2017.05.072
Saadi, Z., Rasmont, A., Cesar, G., Bewa, H., & Benguigui, L. (2012). Fungal degradation of poly(l-lactide) in soil and in compost. Journal of Polymers and the Environment, 20(2), 273-282. https://doi.org/10.1007/S10924-011-0399-9/TABLES/5
Salama, H. E., Aziz, M. S. A., & Sabaa, M. W. (2018). Novel biodegradable and antibacterial edible films based on alginate and chitosan biguanidine hydrochloride. International Journal of Biological Macromolecules, 116, 443-450. https://doi.org/10.1016/j.ijbiomac.2018.04.183
Samui, A. B., & Kanai, T. (2019). Polyhydroxyalkanoates based copolymers. International Journal of Biological Macromolecules, 140, 522-537. https://doi.org/10.1016/j.ijbiomac.2019.08.147
Schmid, M. (2013). Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate and glycerol. Materials, 6(8), 3254-3269. https://doi.org/10.3390/MA6083254
Schmid, M., & Müller, K. (2018). Whey protein-based packaging films and coatings. In Whey proteins: From milk to medicine. (pp. 407-437). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812124-5.00012-6
Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical recycling of packaging plastics: A review. Macromolecular Rapid Communications, 42(3), 2000415. https://doi.org/10.1002/MARC.202000415
Semple, K. E., Zhou, C., Rojas, O. J., Nkeuwa, W. N., & Dai, C. (2022). Moulded pulp fibers for disposable food packaging: A state-of-the-art review. Food Packaging and Shelf Life, 33, 100908. https://doi.org/10.1016/J.FPSL.2022.100908
Seydim, A. C., Sarikus-Tutal, G., & Sogut, E. (2020). Effect of whey protein edible films containing plant essential oils on microbial inactivation of sliced Kasar cheese. Food Packaging and Shelf Life, 26(February), 100567. https://doi.org/10.1016/j.fpsl.2020.100567
Seyfzadeh, M., Motalebi, A. A., Kakoolaki, S., & Gholipour, H. (2013). Chemical, microbiological and sensory evaluation of gutted kilka coated with whey protein based edible film incorporated with sodium alginate during frozen storage. Iranian Journal of Fisheries Sciences, 12(1), 140-153.
Shahbandeh, M. (2020). Worldwide sales of organic foods 1999-2018. Statista. Retrieved from https://www.statista.com/statistics/273090/worldwide-sales-of-organic-foods-since-1999/
Shahbazi, Y., & Shavisi, N. (2019). Effects of sodium alginate coating containing Mentha spicata essential oil and cellulose nanoparticles on extending the shelf life of raw silver carp (Hypophthalmichthys molitrix) fillets. Food Science and Biotechnology, 28(2), 433-440. https://doi.org/10.1007/s10068-018-0486-y
Shaikh, S., Yaqoob, M., & Aggarwal, P. (2021). An overview of biodegradable packaging in food industry. Current Research in Food Science, 4, 503-520. https://doi.org/10.1016/j.crfs.2021.07.005
Shankar, S., Jaiswal, L., & Rhim, J. W. (2016). Gelatin-based nanocomposite films: Potential use in antimicrobial active packaging. In Antimicrobial food packaging. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800723-5.00027-9
Sharifi, F., Khanzadi, S., Hashemi, M., & Azizzadeh, M. (2017). Control of Listeria monocytogenes and Escherichia coli O157:H7 Inoculated on fish fillets using alginate coating containing lactoperoxidase system and Zataria multiflora Boiss essential oil. Journal of Aquatic Food Product Technology, 26(9), 1014-1021. https://doi.org/10.1080/10498850.2017.1375057
Siddiqui, S. A., Bahmid, N. A., Salman, S. H. M., Nawaz, A., Walayat, N., Shekhawat, G. K., Gvozdenko, A. A., Blinov, A. V., & Nagdalian, A. A. (2023). Migration of microplastics from plastic packaging into foods and its potential threats on human health. Advances in Food and Nutrition Research, 103, 313-359. https://doi.org/10.1016/BS.AFNR.2022.07.002
Siddiqui, S. A., Bahmid, N. A., Shekhawat, G. K., & Jafari, S. M. (2022). Introduction to postharvest and postmortem technology. In Postharvest and postmortem processing of raw food materials (pp. 1-38). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818572-8.00010-3
Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2127-2139. https://doi.org/10.1098/RSTB.2008.0289
Sorrentino, A., & Vittoria, V. (2007). Potential perspectives of for food packaging applications. Trends in Food Science & Technology, 18, 84-95. https://doi.org/10.1016/j.tifs.2006.09.004
Su, S., Kopitzky, R., Tolga, S., & Kabasci, S. (2019). Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): A brief review. Polymers, 11(7), 1193. https://doi.org/10.3390/POLYM11071193
Sui, C., Zhang, W., Ye, F., Liu, X., & Yu, G. (2016). Preparation, physical, and mechanical properties of soy protein isolate/guar gum composite films prepared by solution casting. Journal of Applied Polymer Science, 133(18). https://doi.org/10.1002/APP.43382
Sun, Y., Zhang, M., Adhikari, B., Devahastin, S., & Wang, H. (2022). Double-layer indicator films aided by BP-ANN-enabled freshness detection on packaged meat products. Food Packaging and Shelf Life, 31, 100808. https://doi.org/10.1016/J.FPSL.2021.100808
Sun, Y., Zhang, M., Bhandari, B., & Bai, B. (2021). Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control, 127(April), 108151. https://doi.org/10.1016/j.foodcont.2021.108151
Suurs, P., & Barbut, S. (2020). Collagen use for co-extruded sausage casings - A review. Trendsin Food Science & Technology, 102, 91-101. https://doi.org/10.1016/J.TIFS.2020.06.011
Swetha, T. A., Ananthi, V., Bora, A., Sengottuvelan, N., Ponnuchamy, K., Muthusamy, G., & Arun, A. (2023). A review on biodegradable polylactic acid (PLA) production from fermentative food waste - Its applications and degradation. International Journal of Biological Macromolecules, 234, 123703. https://doi.org/10.1016/J.IJBIOMAC.2023.123703
Syamsu, K., Maddu, A., & Bahmid, N. A. (2016). Synthesis of nanofiber from oil palm empty fruit bunches cellulose acetate for bioplastics production. Chemistry and Materials Research, 8(5), 56-62.
Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal enzymes involved in plastics biodegradation. Microorganisms, 10(6), 1180. https://doi.org/10.3390/MICROORGANISMS10061180
Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722. https://doi.org/10.3390/IJMS10093722
Ucpinar Durmaz, B., & Aytac, A. (2021). Effects of polyol-based plasticizer types and concentration on the properties of polyvinyl alcohol and casein blend films. Journal of Polymers and the Environment, 29(1), 313-322. https://doi.org/10.1007/s10924-020-01881-x
Umaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science and Technology, 98, 10-24. https://doi.org/10.1016/j.tifs.2020.01.032
Umaraw, P., & Verma, A. K. (2017). Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach. Critical Reviews in Food Science and Nutrition, 57(6), 1270-1279. https://doi.org/10.1080/10408398.2014.986563
Utsunomia, C., Ren, Q., & Zinn, M. (2020). Poly(4-hydroxybutyrate): Current state and perspectives. Frontiers in Bioengineering and Biotechnology, 8(April), 1-18. https://doi.org/10.3389/fbioe.2020.00257
Valencia-Barragán, C., Triviño, E. C., Tenorio-Alfonso, A., Delgado-Sánchez, C., Kobayashi, Y., Ishigami, A., & Ito, H. (2022). Relating amorphous structure to the tear strength of polylactic acid films. Polymers, 14(10), 1965. https://doi.org/10.3390/POLYM14101965
Vilarinho, F., Andrade, M., Buonocore, G. G., Stanzione, M., Vaz, M. F., & Sanches Silva, A. (2018). Monitoring lipid oxidation in a processed meat product packaged with nanocomposite poly(lactic acid) film. European Polymer Journal, 98, 362-367. https://doi.org/10.1016/J.EURPOLYMJ.2017.11.034
Vilela, P., A, J., Cavallieri, Â. L. F., & Lopes da Cunha, R. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate-gellan gum. Food Hydrocolloids, 25(7), 1710-1718. https://doi.org/10.1016/J.FOODHYD.2011.03.012
Vimaladevi, S., Panda, S. K., Xavier, K. A. M., & Bindu, J. (2015). Packaging performance of organic acid incorporated chitosan films on dried anchovy (Stolephorus indicus). Carbohydrate Polymers, 127, 189-194. https://doi.org/10.1016/J.CARBPOL.2015.03.065
Vinche, M. H., Karimi, K., Zamani, A., & Asachi, R. (2012). Chitosan: A valuable byproduct of ethanolic fermentation by Rhizopus oryzae. Journal of Biobased Materials and Bioenergy, 6(5), 552-557. https://doi.org/10.1166/JBMB.2012.1252
Vital, A. C. P., Guerrero, A., Monteschio, J. D. O., Valero, M. V., Carvalho, C. B., De Abreu Filho, B. A., Madrona, G. S., & do Prado, I. N. (2016). Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLoS One, 11(8), 1-15. https://doi.org/10.1371/journal.pone.0160535
Vytejčková, S., Vápenka, L., Hradecký, J., Dobiáš, J., Hajšlová, J., Loriot, C., Vannini, L., & Poustka, J. (2017). Testing of polybutylene succinate based films for poultry meat packaging. Polymer Testing, 60, 357-364. https://doi.org/10.1016/J.POLYMERTESTING.2017.04.018
Walayat, N., Wang, X., Liu, J., Nawaz, A., Zhang, Z., Khalifa, I., Rincón Cervera, M. Á., Pateiro, M., Lorenzo, J. M., Nikoo, M., & Siddiqui, S. A. (2022). Kappa-carrageenan as an effective cryoprotectant on water mobility and functional properties of grass carp myofibrillar protein gel during frozen storage. LWT - Food Science and Technology, 154, 112675. https://doi.org/10.1016/J.LWT.2021.112675
Wang, D., Sun, Z., Sun, J., Liu, F., Du, L., & Wang, D. (2021). Preparation and characterization of polylactic acid nanofiber films loading Perilla essential oil for antibacterial packaging of chilled chicken. International Journal of Biological Macromolecules, 192, 379-388. https://doi.org/10.1016/J.IJBIOMAC.2021.09.190
Wang, H., Qian, J., & Ding, F. (2018a). Emerging chitosan-based films for food packaging applications. Journal of Agricultural and Food Chemistry, 66(2), 395-413. https://doi.org/10.1021/acs.jafc.7b04528
Wang, L., Heising, J., Fogliano, V., & Dekker, M. (2020). Fat content and storage conditions are key factors on the partitioning and activity of carvacrol in antimicrobial packaging. Food Packaging and Shelf Life, 24, 100500. https://doi.org/10.1016/J.FPSL.2020.100500
Wang, L., Periyasami, G., Aldalbahi, A., & Fogliano, V. (2021). The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour. Food Chemistry, 359, 129859. https://doi.org/10.1016/J.FOODCHEM.2021.129859
Wang, L., Xu, J., Zhang, M., Zheng, H., & Li, L. (2022). Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chemistry, 380, 132022. https://doi.org/10.1016/J.FOODCHEM.2021.132022
Wang, Q., Jiang, Y., Chen, W., Julian McClements, D., Ma, C., Liu, X., & Liu, F. (2022). Development of pH-responsive active film materials based on purple corncob and its application in meat freshness monitoring. Food Research International, 161, 111832. https://doi.org/10.1016/J.FOODRES.2022.111832
Wang, Q., Xiao, S., Shi, S. Q., & Cai, L. (2019). Mechanical property enhancement of self-bonded natural fiber material via controlling cell wall plasticity and structure. Materials & Design, 172, 107763. https://doi.org/10.1016/J.MATDES.2019.107763
Wang, X., Zhai, X., Zou, X., Li, Z., Shi, J., Yang, Z., Sun, Y., Arslan, M., Chen, Z., & Xiao, J. (2022). Novel hydrophobic colorimetric films based on ethylcellulose/castor oil/anthocyanins for pork freshness monitoring. LWT - Food Science and Technology, 164, 113631. https://doi.org/10.1016/J.LWT.2022.113631
Williams, A. T., & Rangel-Buitrago, N. (2022). The past, present, and future of plastic pollution. Marine Pollution Bulletin, 176, 113429. https://doi.org/10.1016/J.MARPOLBUL.2022.113429
Wongphan, P., Khowthong, M., Supatrawiporn, T., & Harnkarnsujarit, N. (2022). Novel edible starch films incorporating papain for meat tenderization. Food Packaging and Shelf Life, 31, 100787. https://doi.org/10.1016/j.fpsl.2021.100787
Wu, F., Misra, M., & Mohanty, A. K. (2021). Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science, 117, 101395. https://doi.org/10.1016/J.PROGPOLYMSCI.2021.101395
Wu, L. T., Tsai, I. L., Ho, Y. C., Hang, Y. H., Lin, C., Tsai, M. L., & Mi, F. L. (2021). Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydrate Polymers, 254, 117410. https://doi.org/10.1016/J.CARBPOL.2020.117410
Wu, Y., Ma, Y., Gao, Y., Liu, Y., & Gao, C. (2022). Poly (lactic acid)-based pH responsive membrane combined with chitosan and alizarin for food packaging. International Journal of Biological Macromolecules, 214, 348-359. https://doi.org/10.1016/J.IJBIOMAC.2022.06.039
Xavier, L. O., Sganzerla, W. G., Rosa, G. B., da Rosa, C. G., Agostinetto, L., de Lima Veeck, A. P., Bretanha, L. C., Micke, G. A., Dalla Costa, M., Bertodi, F. C., Barreto, P. L. M., & Nunes, M. R. (2021). Chitosan packaging functionalized with Cinnamodendron dinisii essential oil loaded zein: A proposal for meat conservation. International Journal of Biological Macromolecules, 169, 183-193. https://doi.org/10.1016/J.IJBIOMAC.2020.12.093
Xiang, N., Yao, Y., Yuen, J. S. K., Stout, A. J., Fennelly, C., Sylvia, R., Schnitzler, A., Wong, S., & Kaplan, D. L. (2022). Biomaterials Edible films for cultivated meat production. Biomaterials, 287(May), 121659. https://doi.org/10.1016/j.biomaterials.2022.121659
Xiao, L., Kang, S., Lapu, M., Jiang, P., Wang, X., Liu, D., Li, J., & Liu, M. (2022). Preparation and characterization of chitosan/pullulan film loading carvacrol for targeted antibacterial packaging of chilled meat. International Journal of Biological Macromolecules, 211, 140-149. https://doi.org/10.1016/J.IJBIOMAC.2022.05.044
Xiao, Y., Liu, Y., Kang, S., & Xu, H. (2021). Insight into the formation mechanism of soy protein isolate films improved by cellulose nanocrystals. Food Chemistry, 359, 129971. https://doi.org/10.1016/J.FOODCHEM.2021.129971
Xie, Y., Niu, X., Yang, J., Fan, R., Shi, J., Ullah, N., Feng, X., & Chen, L. (2020). Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. International Journal of Biological Macromolecules, 150, 480-491. https://doi.org/10.1016/J.IJBIOMAC.2020.01.291
Xiong, X., Yu, I. K. M., Tsang, D. C. W., Bolan, N. S., Sik Ok, Y., Igalavithana, A. D., Kirkham, M. B., Kim, K. H., & Vikrant, K. (2019). Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 375(June), 121983. https://doi.org/10.1016/j.cej.2019.121983
Yang, F., Zhang, C., Ma, Z., & Weng, Y. (2022). In situ formation of microfibrillar PBAT in PGA films: An effective way to robust barrier and mechanical properties for fully biodegradable packaging films. ACS Omega, 7(24), 21280-21290. https://doi.org/10.1021/ACSOMEGA.2C02484/ASSET/IMAGES/LARGE/AO2C02484_0010.JPEG
Yang, J., Zhang, X., Chen, L., Zhou, X., Fan, X., Hu, Y., Niu, X., Xu, X., Zhou, G., Ullah, N., & Feng, X. (2022). Antibacterial aerogels with nanosilver reduced in situ by carboxymethyl cellulose for fresh meat preservation. International Journal of Biological Macromolecules, 213, 621-630. https://doi.org/10.1016/J.IJBIOMAC.2022.05.145
Yang, X., Wang, H., Chen, J., Fu, Z., Zhao, X., & Li, Y. (2019). Copolymers containing two types of reactive groups: New compatibilizer for immiscible PLLA/PA11 polymer blends. Polymer, 177, 139-148. https://doi.org/10.1016/J.POLYMER.2019.05.074
Yen, M. T., Yang, J. H., & Mau, J. L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75(1), 15-21. https://doi.org/10.1016/j.carbpol.2008.06.006
Yilmaz, P., Demirhan, E., & Ozbek, B. (2022). Development of Ficus carica Linn leaves extract incorporated chitosan films for active food packaging materials and investigation of their properties. Food Bioscience, 46, 101542. https://doi.org/10.1016/J.FBIO.2021.101542
You, P., Wang, L., Zhou, N., Yang, Y., & Pang, J. (2022). A pH-intelligent response fish packaging film: Konjac glucomannan/carboxymethyl cellulose/blackcurrant anthocyanin antibacterial composite film. International Journal of Biological Macromolecules, 204, 386-396. https://doi.org/10.1016/J.IJBIOMAC.2022.02.027
Youssef, A. M., Assem, F. M., El-Sayed, S. M., Salama, H., & Abd El-Salam, M. H. (2017). Utilization of edible films and coatings as packaging materials for preservation of cheeses. Journal of Packaging Technology and Research, 1, 87-99. https://doi.org/10.1007/s41783-017-0012-3
Yu, Z., Dhital, R., Wang, W., Sun, L., Zeng, W., Mustapha, A., & Lin, M. (2019). Development of multifunctional nanocomposites containing cellulose nanofibrils and soy proteins as food packaging materials. Food Packaging and Shelf Life, 21, 100366. https://doi.org/10.1016/J.FPSL.2019.100366
Zaaba, N. F., & Jaafar, M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 60(9), 2061-2075. https://doi.org/10.1002/PEN.25511
Zhang, X., Yi, J., Zhao, G., Huang, L., Yan, G., Chen, Y., & Liu, P. (2016). Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property. Surface and Coatings Technology, 286, 103-112. https://doi.org/10.1016/j.surfcoat.2015.12.018
Zhao, R., Guan, W., Zheng, P., Tian, F., Zhang, Z., Sun, Z., & Cai, L. (2022). Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control, 132, 108545. https://doi.org/10.1016/J.FOODCONT.2021.108545
Zheng, H., Tang, H., Yang, C., Chen, J., Wang, L., Dong, Q., Shi, W., Li, L., & Liu, Y. (2022). Evaluation of the slow-release polylactic acid/polyhydroxyalkanoates active film containing oregano essential oil on the quality and flavor of chilled pufferfish (Takifugu obscurus) fillets. Food Chemistry, 385, 132693. https://doi.org/10.1016/j.foodchem.2022.132693
Zheng, J., Hu, Y., Su, C., Liang, W., Liu, X., Zhao, W., Sun, Z., Zhang, X., Lu, Y., Shen, H., Ge, X., Ospankulova, G., & Li, W. (2023). Structural, physicochemical and biodegradable properties of composite plastics prepared with polyvinyl alcohol (PVA), OSA potato starch and gliadin. Journal of Food Engineering, 339, 111278. https://doi.org/10.1016/J.JFOODENG.2022.111278
Zheng, T., Tang, P., & Li, G. (2023). Development of a pH-sensitive film based on collagen/chitosan/ZnO nanoparticles and mulberry extract for pork freshness monitoring. Food Chemistry, 402, 134428. https://doi.org/10.1016/J.FOODCHEM.2022.134428
Zhou, X., Zong, X., Zhang, M., Ge, Q., Qi, J., Liang, J., Xu, X., & Xiong, G. (2021). Effect of konjac glucomannan/carrageenan-based edible emulsion coatings with camellia oil on quality and shelf-life of chicken meat. International Journal of Biological Macromolecules, 183, 331-339. https://doi.org/10.1016/j.ijbiomac.2021.04.165
Zhu, J., Wu, H., & Sun, Q. (2019). Preparation of crosslinked active bilayer film based on chitosan and alginate for regulating ascorbate-glutathione cycle of postharvest cherry tomato (Lycopersicon esculentum). International Journal of Biological Macromolecules, 130, 584-594. https://doi.org/10.1016/j.ijbiomac.2019.03.006
Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2010). Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 24(1), 49-59. https://doi.org/10.1016/j.foodhyd.2009.08.003