Isolation of Polystyrene Bead-Induced Phagosomes for Western Blotting.
Immunity
Infection
Phagocytosis
Phagosome
Western blotting
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
28
6
2023
pubmed:
27
6
2023
entrez:
26
6
2023
Statut:
ppublish
Résumé
The engulfment of "self" and "non-self" particles by immune and non-immune cells is crucial for maintaining homeostasis and combatting infection. Engulfed particles are contained within vesicles termed phagosomes that undergo dynamic fusion and fission events, which ultimately results in the formation of phagolysosomes that degrade the internalized cargo. This process is highly conserved and plays an important role in maintaining homeostasis, and disruptions in this are implicated in numerous inflammatory disorders. Given its broad role in innate immunity, it is important to understand how different stimuli or changes within the cell can shape the phagosome architecture. In this chapter, we describe a robust protocol for the isolation of polystyrene bead-induced phagosomes using sucrose density gradient centrifugation. This process results in a highly pure sample that can be used in downstream applications, namely, Western blotting.
Identifiants
pubmed: 37365472
doi: 10.1007/978-1-0716-3338-0_16
doi:
Substances chimiques
Polystyrenes
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
237-246Subventions
Organisme : Wellcome Trust
ID : 215542/Z/19/Z
Pays : United Kingdom
Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 6(1):291
doi: 10.1038/s41392-021-00687-0
pubmed: 34344870
pmcid: 8333067
Pauwels AM, Trost M, Beyaert R et al (2017) Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol 38(6):407–422
doi: 10.1016/j.it.2017.03.006
pubmed: 28416446
pmcid: 5455985
Dill BD, Gierlinski M, Hartlova A et al (2015) Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors. Mol Cell Proteomics 14(5):1334–1349
doi: 10.1074/mcp.M114.044594
pubmed: 25755298
pmcid: 4424403
Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9(10):781–795
doi: 10.1038/nrm2515
pubmed: 18813294
pmcid: 2908392
Guo M, Hartlova A, Dill BD et al (2015) High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages. Proteomics 15(18):3169–3174
doi: 10.1002/pmic.201400431
Hartlova A, Herbst S, Peltier J et al (2018) LRRK2 is a negative regulator of mycobacterium tuberculosis phagosome maturation in macrophages. EMBO J 37(12):e98694
doi: 10.15252/embj.201798694
pubmed: 29789389
pmcid: 6003659
Trost M, English L, Lemieux S et al (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30(1):143–154
doi: 10.1016/j.immuni.2008.11.006
pubmed: 19144319
Dean P, Heunis T, Hartlova A et al (2019) Regulation of phagosome functions by post-translational modifications: a new paradigm. Curr Opin Chem Biol 48:73–80
doi: 10.1016/j.cbpa.2018.11.001
pubmed: 30481638
Bilkei-Gorzo O, Heunis T, Marin-Rubio JL et al (2022) The E3 ubiquitin ligase RNF115 regulates phagosome maturation and host response to bacterial infection. EMBO J 41:e108970
doi: 10.15252/embj.2021108970
pubmed: 36281581
pmcid: 9713710
Kovacsovics-Bankowski M, Rock KL (1995) A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267(5195):243–246
doi: 10.1126/science.7809629
pubmed: 7809629
Guo M, Hartlova A, Gierlinski M et al (2019) Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J 38(11):e100299
doi: 10.15252/embj.2018100299
pubmed: 31028084
pmcid: 6545745