Isolation of Polystyrene Bead-Induced Phagosomes for Western Blotting.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 28 6 2023
pubmed: 27 6 2023
entrez: 26 6 2023
Statut: ppublish

Résumé

The engulfment of "self" and "non-self" particles by immune and non-immune cells is crucial for maintaining homeostasis and combatting infection. Engulfed particles are contained within vesicles termed phagosomes that undergo dynamic fusion and fission events, which ultimately results in the formation of phagolysosomes that degrade the internalized cargo. This process is highly conserved and plays an important role in maintaining homeostasis, and disruptions in this are implicated in numerous inflammatory disorders. Given its broad role in innate immunity, it is important to understand how different stimuli or changes within the cell can shape the phagosome architecture. In this chapter, we describe a robust protocol for the isolation of polystyrene bead-induced phagosomes using sucrose density gradient centrifugation. This process results in a highly pure sample that can be used in downstream applications, namely, Western blotting.

Identifiants

pubmed: 37365472
doi: 10.1007/978-1-0716-3338-0_16
doi:

Substances chimiques

Polystyrenes 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

237-246

Subventions

Organisme : Wellcome Trust
ID : 215542/Z/19/Z
Pays : United Kingdom

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 6(1):291
doi: 10.1038/s41392-021-00687-0 pubmed: 34344870 pmcid: 8333067
Pauwels AM, Trost M, Beyaert R et al (2017) Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol 38(6):407–422
doi: 10.1016/j.it.2017.03.006 pubmed: 28416446 pmcid: 5455985
Dill BD, Gierlinski M, Hartlova A et al (2015) Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors. Mol Cell Proteomics 14(5):1334–1349
doi: 10.1074/mcp.M114.044594 pubmed: 25755298 pmcid: 4424403
Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9(10):781–795
doi: 10.1038/nrm2515 pubmed: 18813294 pmcid: 2908392
Guo M, Hartlova A, Dill BD et al (2015) High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages. Proteomics 15(18):3169–3174
doi: 10.1002/pmic.201400431
Hartlova A, Herbst S, Peltier J et al (2018) LRRK2 is a negative regulator of mycobacterium tuberculosis phagosome maturation in macrophages. EMBO J 37(12):e98694
doi: 10.15252/embj.201798694 pubmed: 29789389 pmcid: 6003659
Trost M, English L, Lemieux S et al (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30(1):143–154
doi: 10.1016/j.immuni.2008.11.006 pubmed: 19144319
Dean P, Heunis T, Hartlova A et al (2019) Regulation of phagosome functions by post-translational modifications: a new paradigm. Curr Opin Chem Biol 48:73–80
doi: 10.1016/j.cbpa.2018.11.001 pubmed: 30481638
Bilkei-Gorzo O, Heunis T, Marin-Rubio JL et al (2022) The E3 ubiquitin ligase RNF115 regulates phagosome maturation and host response to bacterial infection. EMBO J 41:e108970
doi: 10.15252/embj.2021108970 pubmed: 36281581 pmcid: 9713710
Kovacsovics-Bankowski M, Rock KL (1995) A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267(5195):243–246
doi: 10.1126/science.7809629 pubmed: 7809629
Guo M, Hartlova A, Gierlinski M et al (2019) Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J 38(11):e100299
doi: 10.15252/embj.2018100299 pubmed: 31028084 pmcid: 6545745

Auteurs

Benjamin B A Raymond (BBA)

Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.

Joseph Inns (J)

Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.

Andrew M Frey (AM)

Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.

Matthias Trost (M)

Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. matthias.trost@newcastle.ac.uk.

Articles similaires

Calcineurin inhibition enhances

Priyanka Das, Alejandro Aballay, Jogender Singh
1.00
Animals Caenorhabditis elegans Longevity Caenorhabditis elegans Proteins Calcineurin
1.00
Animals Mice Immunity, Innate Interneurons Synapses
Dendritic Cells Animals Cross-Priming Mice Mice, Inbred C57BL
Animals Influenza A Virus, H9N2 Subtype Chickens Influenza in Birds Immunity, Innate

Classifications MeSH