Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation.
Cell wall degradation
Endogenous hormone
Energy metabolism
IAA
Microspore embryogenesis
ROS
Wucai
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
06 Jul 2023
06 Jul 2023
Historique:
received:
13
02
2023
accepted:
23
06
2023
medline:
10
7
2023
pubmed:
7
7
2023
entrez:
6
7
2023
Statut:
epublish
Résumé
Microspore embryogenesis is an extraordinarily complicated process, comprehensively regulated by a composite network of physiological and molecular factors, among which hormone is one of the most crucial factors. Auxin is required for stress-induced microspore reprogramming, however, the mechanism of its regulation of microspore embryogenesis is still unclear. In this study, we found exogenously spraying 100 mg·L These findings indicated that exogenous IAA altered the contents of endogenous hormone content, total soluble sugar, amino acid, starch, soluble protein, MDA and protopectin, the activities of CAT and peroxidase (POD), and the production rate of H
Sections du résumé
BACKGROUND
BACKGROUND
Microspore embryogenesis is an extraordinarily complicated process, comprehensively regulated by a composite network of physiological and molecular factors, among which hormone is one of the most crucial factors. Auxin is required for stress-induced microspore reprogramming, however, the mechanism of its regulation of microspore embryogenesis is still unclear.
RESULTS
RESULTS
In this study, we found exogenously spraying 100 mg·L
CONCLUSIONS
CONCLUSIONS
These findings indicated that exogenous IAA altered the contents of endogenous hormone content, total soluble sugar, amino acid, starch, soluble protein, MDA and protopectin, the activities of CAT and peroxidase (POD), and the production rate of H
Identifiants
pubmed: 37415142
doi: 10.1186/s12864-023-09483-2
pii: 10.1186/s12864-023-09483-2
pmc: PMC10327361
doi:
Substances chimiques
Hydrogen Peroxide
BBX060AN9V
Plant Growth Regulators
0
Indoleacetic Acids
0
Starch
9005-25-8
Hormones
0
Adenosine Triphosphate
8L70Q75FXE
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
380Subventions
Organisme : Scientific Research Project of Anhui Education Department
ID : GXXT-2022-072
Organisme : Key Project Foundation of Natural Science Research in Universities of Anhui Province
ID : KJ2019A0189
Informations de copyright
© 2023. The Author(s).
Références
Plant Biotechnol J. 2022 Mar;20(3):423-425
pubmed: 34971489
BMC Genomics. 2019 Nov 6;20(1):810
pubmed: 31694527
Genome Biol. 2014;15(12):550
pubmed: 25516281
Bioessays. 2006 Nov;28(11):1091-101
pubmed: 17041898
Trends Plant Sci. 2017 Jan;22(1):11-19
pubmed: 27666517
Plant Cell. 2011 Feb;23(2):515-33
pubmed: 21297036
Plant Mol Biol. 2002 Mar-Apr;48(5-6):751-64
pubmed: 11999848
BMC Plant Biol. 2016 Aug 11;16(1):176
pubmed: 27514748
Plant Physiol. 2000 Sep;124(1):231-42
pubmed: 10982438
J Sep Sci. 2016 May;39(10):1804-13
pubmed: 26990813
Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12235-40
pubmed: 9342392
Phytochemistry. 2014 Sep;105:147-57
pubmed: 24947339
Mol Breed. 2022 Jul 22;42(8):43
pubmed: 37313515
Int J Mol Sci. 2019 Nov 05;20(21):
pubmed: 31694312
Plant Physiol. 2018 Jun;177(2):476-489
pubmed: 29703867
Plant Signal Behav. 2019;14(2):1559577
pubmed: 30582408
Science. 2012 Mar 16;335(6074):1348-51
pubmed: 22422982
PLoS One. 2016 Jun 09;11(6):e0157022
pubmed: 27280887
Front Plant Sci. 2019 Sep 27;10:1200
pubmed: 31611902
Nucleic Acids Res. 2023 Jan 6;51(D1):D587-D592
pubmed: 36300620
Plant J. 1993 Nov;4(5):781-91
pubmed: 8275098
J Exp Bot. 2018 Jan 4;69(2):133-136
pubmed: 29309681
BMC Genomics. 2014 Jun 21;15:510
pubmed: 24952381
PLoS Genet. 2013 Nov;9(11):e1003933
pubmed: 24278028
Nat Commun. 2020 May 14;11(1):2395
pubmed: 32409656
Plant Physiol. 2006 May;141(1):97-107
pubmed: 16543410
J Exp Bot. 2002 Aug;53(375):1747-51
pubmed: 12147724
J Biol Chem. 2013 May 3;288(18):13082-92
pubmed: 23479727
Plant Reprod. 2013 Sep;26(3):245-54
pubmed: 23839307
Plant Cell. 2007 Jun;19(6):2039-52
pubmed: 17573535
Plant Physiol Biochem. 2023 Mar;196:807-820
pubmed: 36863218
Plant Methods. 2018 Apr 16;14:30
pubmed: 29686723
Proc Natl Acad Sci U S A. 2021 Sep 28;118(39):
pubmed: 34551979
Plant Cell Environ. 2012 Feb;35(2):234-44
pubmed: 21711357
PLoS Genet. 2018 May 29;14(5):e1007397
pubmed: 29813066
J Exp Bot. 2002 Oct;53(377):2115-9
pubmed: 12324535
Science. 2009 Mar 13;323(5920):1485-8
pubmed: 19286558
Plant Mol Biol. 2004 May;55(3):343-67
pubmed: 15604686
Trends Plant Sci. 2007 Jun;12(6):267-77
pubmed: 17499007
Plant Cell Physiol. 2010 Jun;51(6):981-96
pubmed: 20435647
Biosci Biotechnol Biochem. 2015;80(1):34-42
pubmed: 26364770
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3474-9
pubmed: 16492736
Int J Mol Sci. 2019 Oct 16;20(20):
pubmed: 31623069
J Mol Biol. 1993 Feb 5;229(3):797-801
pubmed: 8433375
Plant Cell Rep. 2015 Jan;34(1):47-62
pubmed: 25261160
Plant J. 1998 Jul;15(1):79-88
pubmed: 9744097
Biosci Biotechnol Biochem. 2007 Mar;71(3):761-71
pubmed: 17341835
Plant Biotechnol J. 2010 May 1;8(4):377-424
pubmed: 20233334
Biochem Biophys Res Commun. 2019 Sep 10;517(1):63-68
pubmed: 31320138
Plant Cell. 2007 Mar;19(3):847-61
pubmed: 17400897
J Exp Bot. 2021 Sep 30;72(18):6418-6436
pubmed: 34175924
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5430-5
pubmed: 19279202
Dev Cell. 2012 Jan 17;22(1):211-22
pubmed: 22264733
Plant J. 2020 Jun;102(5):931-947
pubmed: 31908046
Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:561-591
pubmed: 11337409
Nat Protoc. 2010 Jun;5(6):986-92
pubmed: 20448544
Phytochemistry. 2001 Jul;57(6):929-67
pubmed: 11423142
J Exp Bot. 2019 Jun 1;70(11):2965-2978
pubmed: 30753698