Extreme summers impact cropland and grassland soil microbiomes.
Journal
The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
23
01
2023
accepted:
23
06
2023
revised:
20
06
2023
medline:
18
9
2023
pubmed:
8
7
2023
entrez:
7
7
2023
Statut:
ppublish
Résumé
The increasing frequency of extreme weather events highlights the need to understand how soil microbiomes respond to such disturbances. Here, metagenomics was used to investigate the effects of future climate scenarios (+0.6 °C warming and altered precipitation) on soil microbiomes during the summers of 2014-2019. Unexpectedly, Central Europe experienced extreme heatwaves and droughts during 2018-2019, causing significant impacts on the structure, assembly, and function of soil microbiomes. Specifically, the relative abundance of Actinobacteria (bacteria), Eurotiales (fungi), and Vilmaviridae (viruses) was significantly increased in both cropland and grassland. The contribution of homogeneous selection to bacterial community assembly increased significantly from 40.0% in normal summers to 51.9% in extreme summers. Moreover, genes associated with microbial antioxidant (Ni-SOD), cell wall biosynthesis (glmSMU, murABCDEF), heat shock proteins (GroES/GroEL, Hsp40), and sporulation (spoIID, spoVK) were identified as potential contributors to drought-enriched taxa, and their expressions were confirmed by metatranscriptomics in 2022. The impact of extreme summers was further evident in the taxonomic profiles of 721 recovered metagenome-assembled genomes (MAGs). Annotation of contigs and MAGs suggested that Actinobacteria may have a competitive advantage in extreme summers due to the biosynthesis of geosmin and 2-methylisoborneol. Future climate scenarios caused a similar pattern of changes in microbial communities as extreme summers, but to a much lesser extent. Soil microbiomes in grassland showed greater resilience to climate change than those in cropland. Overall, this study provides a comprehensive framework for understanding the response of soil microbiomes to extreme summers.
Identifiants
pubmed: 37419993
doi: 10.1038/s41396-023-01470-5
pii: 10.1038/s41396-023-01470-5
pmc: PMC10504347
doi:
Substances chimiques
Soil
0
Banques de données
figshare
['10.6084/m9.figshare.20260221']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1589-1600Informations de copyright
© 2023. The Author(s).
Références
Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci USA. 2017;114:4881–6.
pubmed: 28439005
pmcid: 5441735
doi: 10.1073/pnas.1618082114
Fischer EM, Knutti R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Change. 2015;5:560–4.
doi: 10.1038/nclimate2617
Bastos A, Ciais P, Friedlingstein P, Sitch S, Pongratz J, Fan L, et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci Adv. 2020;6:eaba2724.
pubmed: 32577519
pmcid: 7286671
doi: 10.1126/sciadv.aba2724
Schuldt B, Buras A, Arend M, Vitasse Y, Beierkuhnlein C, Damm A, et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl Ecol. 2020;45:86–103.
doi: 10.1016/j.baae.2020.04.003
Toreti A, Belward A, Perez‐Dominguez I, Naumann G, Luterbacher J, Cronie O, et al. The exceptional 2018 European water seesaw calls for action on adaptation. Earth’s Future. 2019;7:652–63.
doi: 10.1029/2019EF001170
Coban O, De Deyn GB, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022;375:abe0725.
pubmed: 35239372
doi: 10.1126/science.abe0725
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
pubmed: 28824177
doi: 10.1038/nrmicro.2017.87
Schimel JP. Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst. 2018;49:409–32.
doi: 10.1146/annurev-ecolsys-110617-062614
Jansson JK, Hofmockel KS. Soil microbiomes and climate change. Nat Rev Microbiol. 2020;18:35–46.
pubmed: 31586158
doi: 10.1038/s41579-019-0265-7
Xiong J, Sun H, Peng F, Zhang H, Xue X, Gibbons SM, et al. Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiol Ecol. 2014;89:281–92.
pubmed: 24476229
doi: 10.1111/1574-6941.12289
Khan MJ, Jurburg SD, He J, Brodie G, Gupta D. Impact of microwave disinfestation treatments on the bacterial communities of no‐till agricultural soils. Eur J Soil Sci. 2020;71:1006–17.
doi: 10.1111/ejss.12867
Guo X, Zhou X, Hale L, Yuan M, Ning D, Feng J, et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat Ecol Evol. 2019;3:612–9.
pubmed: 30911147
doi: 10.1038/s41559-019-0848-8
Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Change. 2021;11:343–8.
doi: 10.1038/s41558-021-00989-9
Berard A, Sassi MB, Kaisermann A, Renault P. Soil microbial community responses to heat wave components: drought and high temperature. Clim Res. 2015;66:243–64.
doi: 10.3354/cr01343
Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 2011;480:368–71.
pubmed: 22056985
doi: 10.1038/nature10576
Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AA, et al. Genome-centric view of carbon processing in thawing permafrost. Nature 2018;560:49–54.
pubmed: 30013118
doi: 10.1038/s41586-018-0338-1
Xu L, Dong Z, Chiniquy D, Pierroz G, Deng S, Gao C, et al. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nat Commun. 2021;12:3209.
pubmed: 34050180
pmcid: 8163885
doi: 10.1038/s41467-021-23553-7
Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang J-T, Eisenhauer N, et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat Clim Change. 2020;10:550–4.
doi: 10.1038/s41558-020-0759-3
de Oliveira TB, de Lucas RC, Scarcella ASDA, Contato AG, Pasin TM, Martinez CA, et al. Fungal communities differentially respond to warming and drought in tropical grassland soil. Mol Ecol. 2020;29:1550–9.
pubmed: 32243629
doi: 10.1111/mec.15423
Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ, Firestone MK, et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 2018;6:1–12.
doi: 10.1186/s40168-018-0499-z
Wu R, Chai B, Cole JR, Gunturu SK, Guo X, Tian R, et al. Targeted assemblies of cas1 suggest CRISPR-Cas’s response to soil warming. ISME J. 2020;14:1651–62.
pubmed: 32221408
pmcid: 7305122
doi: 10.1038/s41396-020-0635-1
Jansson JK, Wu R. Soil viral diversity, ecology and climate change. Nat Rev Microbiol. 2023;21:296–311.
Schädler M, Buscot F, Klotz S, Reitz T, Durka W, Bumberger J, et al. Investigating the consequences of climate change under different land‐use regimes: a novel experimental infrastructure. Ecosphere. 2019;10:e02635.
doi: 10.1002/ecs2.2635
Hari V, Rakovec O, Markonis Y, Hanel M, Kumar R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci Rep. 2020;10:1–10.
doi: 10.1038/s41598-020-68872-9
Sünnemann M, Alt C, Kostin JE, Lochner A, Reitz T, Siebert J, et al. Low‐intensity land‐use enhances soil microbial activity, biomass and fungal‐to‐bacterial ratio in current and future climates. J Appl Ecol. 2021;58:2614–25.
doi: 10.1111/1365-2664.14004
Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 2018;6:1–13.
doi: 10.1186/s40168-018-0541-1
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.
pubmed: 25609793
doi: 10.1093/bioinformatics/btv033
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ . 2019;7:e7359
pubmed: 31388474
pmcid: 6662567
doi: 10.7717/peerj.7359
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
pubmed: 25977477
pmcid: 4484387
doi: 10.1101/gr.186072.114
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
pubmed: 31730192
pmcid: 7703759
doi: 10.1093/bioinformatics/btz848
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
pubmed: 28742071
pmcid: 5702732
doi: 10.1038/ismej.2017.126
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 2010;11:1–11.
doi: 10.1186/1471-2105-11-119
Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.
pubmed: 32766782
pmcid: 7498326
doi: 10.1093/nar/gkaa621
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, Van Wezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–W35.
pubmed: 33978755
pmcid: 8262755
doi: 10.1093/nar/gkab335
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.
pubmed: 33828273
pmcid: 8026399
doi: 10.1038/s41592-021-01101-x
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.
pubmed: 27327495
pmcid: 4915700
doi: 10.1371/journal.pcbi.1004957
Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.
doi: 10.1038/ncomms11257
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012;28:3211–7.
pubmed: 23071270
doi: 10.1093/bioinformatics/bts611
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.
pubmed: 23193283
pmcid: 3531112
doi: 10.1093/nar/gks1219
Bay SK, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, et al. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME J. 2021;15:3339–56.
pubmed: 34035443
pmcid: 8528921
doi: 10.1038/s41396-021-01001-0
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021;9:1–13.
doi: 10.1186/s40168-020-00990-y
Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578–85.
pubmed: 33349699
doi: 10.1038/s41587-020-00774-7
Wolf YI, Kazlauskas D, Iranzo J, Lucía-Sanz A, Kuhn JH, Krupovic M, et al. Origins and evolution of the global RNA virome. MBio 2018;9:e02329–02318.
pubmed: 30482837
pmcid: 6282212
doi: 10.1128/mBio.02329-18
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw, Artic. 2015;67:1–48.
Kuznetsova A, Brockhoff PB, Christensen RH. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26.
doi: 10.18637/jss.v082.i13
Lenth R, Singmann H, Love J, Buerkner P, Herve M. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.7.2. https://cran.r-project.org/web/packages/emmeans/index.html .
Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun. 2020;11:4717.
pubmed: 32948774
pmcid: 7501310
doi: 10.1038/s41467-020-18560-z
Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2007;2:5.
pubmed: 18084642
pmcid: 2139991
doi: 10.6026/97320630002005
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.
doi: 10.1186/s13059-014-0550-8
Breitkreuz C, Herzig L, Buscot F, Reitz T, Tarkka M. Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environ Microbiol. 2021;23:5866–82.
pubmed: 34029439
doi: 10.1111/1462-2920.15607
Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11:2691–704.
pubmed: 28753209
pmcid: 5702725
doi: 10.1038/ismej.2017.118
Pérez Castro S, Cleland EE, Wagner R, Sawad RA, Lipson DA. Soil microbial responses to drought and exotic plants shift carbon metabolism. ISME J. 2019;13:1776–87.
pubmed: 30872806
pmcid: 6776022
doi: 10.1038/s41396-019-0389-9
Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci USA. 2018;115:E4284–E4293.
pubmed: 29666229
pmcid: 5939072
doi: 10.1073/pnas.1717308115
Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol. 2018;24:2818–27.
doi: 10.1111/gcb.14113
Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold CW, Zezula D, et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat Commun. 2021;12:5308.
pubmed: 34489463
pmcid: 8421443
doi: 10.1038/s41467-021-25675-4
Pester M, Schleper C, Wagner M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol. 2011;14:300–6.
pubmed: 21546306
pmcid: 3126993
doi: 10.1016/j.mib.2011.04.007
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. ISME J 2022;16:1491–501.
pubmed: 35091647
pmcid: 9123079
doi: 10.1038/s41396-022-01199-7
Trubl G, Kimbrel JA, Liquet-Gonzalez J, Nuccio EE, Weber PK, Pett-Ridge J, et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 2021;9:208.
pubmed: 34663463
pmcid: 8522061
doi: 10.1186/s40168-021-01154-2
Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.
pubmed: 30013236
pmcid: 6786970
doi: 10.1038/s41564-018-0190-y
Lee S, Sieradzki ET, Nicolas AM, Walker RL, Firestone MK, Hazard C, et al. Methane-derived carbon flows into host–virus networks at different trophic levels in soil. Proc Natl Acad Sci USA. 2021;118:e2105124118.
pubmed: 34349022
pmcid: 8364182
doi: 10.1073/pnas.2105124118
Zheng X, Jahn MT, Sun M, Friman V-P, Balcazar JL, Wang J, et al. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME J. 2022;16:1397–408.
pubmed: 35039616
pmcid: 9038774
doi: 10.1038/s41396-022-01188-w
Durham DM, Sieradzki ET, ter Horst AM, Santos-Medellín C, Bess CWA, Geonczy SE, et al. Substantial differences in soil viral community composition within and among four Northern California habitats. ISME Commun. 2022;2:100.
pmcid: 9723544
doi: 10.1038/s43705-022-00171-y
Wu R, Davison MR, Nelson WC, Graham EB, Fansler SJ, Farris Y, et al. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes. MBio 2021;12:e02595–02521.
pubmed: 34724822
pmcid: 8567247
doi: 10.1128/mBio.02595-21
Liao H, Li H, Duan C-S, Zhou X-Y, Luo Q-P, An X-L. et al. Response of soil viral communities to land use changes. Nat Commun. 2022;13:6027
pubmed: 36224209
pmcid: 9556555
doi: 10.1038/s41467-022-33771-2
Crowther TW, Van den Hoogen J, Wan J, Mayes MA, Keiser A, Mo L, et al. The global soil community and its influence on biogeochemistry. Science 2019;365:eaav0550.
pubmed: 31439761
doi: 10.1126/science.aav0550
Starr EP, Nuccio EE, Pett-Ridge J, Banfield JF, Firestone MK. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc Natl Acad Sci USA. 2019;116:25900–8.
pubmed: 31772013
pmcid: 6926006
doi: 10.1073/pnas.1908291116
Hillary LS, Adriaenssens EM, Jones DL, McDonald JE. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME Commun. 2022;2:34.
pubmed: 36373138
pmcid: 8992426
doi: 10.1038/s43705-022-00110-x
Wu R, Davison MR, Gao Y, Nicora CD, Mcdermott JE, Burnum-Johnson KE, et al. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun Biol. 2021;4:992.
pubmed: 34446837
pmcid: 8390657
doi: 10.1038/s42003-021-02514-2
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022;185:4023–37.
pubmed: 36174579
doi: 10.1016/j.cell.2022.08.023
Francioli D, van Ruijven J, Bakker L, Mommer L. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecol. 2020;48:100987.
doi: 10.1016/j.funeco.2020.100987
Fareed Mohamed Wahdan S, Hossen S, Tanunchai B, Schädler M, Buscot F, Purahong W. Future climate significantly alters fungal plant pathogen dynamics during the early phase of wheat litter decomposition. Microorganisms 2020;8:908.
pubmed: 32560135
pmcid: 7356542
doi: 10.3390/microorganisms8060908
Wahdan SFM, Hossen S, Tanunchai B, Sansupa C, Schädler M, Noll M, et al. Life in the wheat litter: effects of future climate on microbiome and function during the early phase of decomposition. Micro Ecol. 2022;84:90–105.
doi: 10.1007/s00248-021-01840-6
Powell JR, Rillig MC. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. N Phytol. 2018;220:1059–75.
doi: 10.1111/nph.15119
Miozzi L, Vaira AM, Catoni M, Fiorilli V, Accotto GP, Lanfranco L. Arbuscular mycorrhizal symbiosis: plant friend or foe in the fight against viruses? Front Microbiol. 2019;10:1238.
pubmed: 31231333
pmcid: 6558290
doi: 10.3389/fmicb.2019.01238
Martínez Y, Li X, Liu G, Bin P, Yan W, Más D, et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids. 2017;49:2091–8.
pubmed: 28929442
doi: 10.1007/s00726-017-2494-2
Olin-Sandoval V, Yu JSL, Miller-Fleming L, Alam MT, Kamrad S, Correia-Melo C, et al. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature 2019;572:249–53.
pubmed: 31367038
pmcid: 6774798
doi: 10.1038/s41586-019-1442-6
Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S. Alleviation of drought stress and metabolic changes in Timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci. 2016;7:584.
Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities. Front Plant Sci. 2018;8:2223.
Kearns PJ, Shade A. Trait-based patterns of microbial dynamics in dormancy potential and heterotrophic strategy: case studies of resource-based and post-press succession. ISME J. 2018;12:2575–81.
pubmed: 29959406
pmcid: 6194022
doi: 10.1038/s41396-018-0194-x
Ruiz N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci USA. 2008;105:15553–7.
pubmed: 18832143
pmcid: 2563115
doi: 10.1073/pnas.0808352105
Schlesinger MJ. Heat shock proteins. J Biol Chem. 1990;265:12111–4.
pubmed: 2197269
doi: 10.1016/S0021-9258(19)38314-0
Sourjik V, Wingreen NS. Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol. 2012;24:262–8.
pubmed: 22169400
doi: 10.1016/j.ceb.2011.11.008
Xu L, Coleman-Derr D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr Opin Microbiol. 2019;49:1–6.
pubmed: 31454709
doi: 10.1016/j.mib.2019.07.003
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria. J Med. 2018;54:287–93.
Boden JS, Konhauser KO, Robbins LJ, Sánchez-Baracaldo P. Timing the evolution of antioxidant enzymes in cyanobacteria. Nat Commun. 2021;12:4742.
pubmed: 34362891
pmcid: 8346466
doi: 10.1038/s41467-021-24396-y
van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol. 2020;18:546–58.
pubmed: 32483324
doi: 10.1038/s41579-020-0379-y
Zaroubi L, Ozugergin I, Mastronardi K, Imfeld A, Law C, Gélinas Y, et al. The ubiquitous soil terpene geosmin acts as a warning chemical. Appl Environ Microbiol. 2022;88:e00093–00022.
pubmed: 35323022
pmcid: 9004350
doi: 10.1128/aem.00093-22
Becher PG, Verschut V, Bibb MJ, Bush MJ, Molnár BP, Barane E, et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol. 2020;5:821–9.
pubmed: 32251369
doi: 10.1038/s41564-020-0697-x
Parvez A, Giri S, Giri GR, Kumari M, Bisht R, Saxena P. Novel type III polyketide synthases biosynthesize methylated polyketides in Mycobacterium marinum. Sci Rep. 2018;8:1–13.
doi: 10.1038/s41598-018-24980-1
Stasiuk M, Kozubek A. Biological activity of phenolic lipids. Cell Mol Life Sci. 2010;67:841–60.
pubmed: 20213924
doi: 10.1007/s00018-009-0193-1
Barnett SE, Youngblut ND, Buckley DH. Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiol Ecol. 2020;96:fiz194.
pubmed: 31834372
doi: 10.1093/femsec/fiz194
Osburn ED, Aylward FO, Barrett J. Historical land use has long-term effects on microbial community assembly processes in forest soils. ISME Commun. 2021;1:48.
pmcid: 9723674
doi: 10.1038/s43705-021-00051-x
Sünnemann M, Siebert J, Reitz T, Schädler M, Yin R, Eisenhauer N. Combined effects of land-use type and climate change on soil microbial activity and invertebrate decomposer activity. Agric Ecosyst Environ. 2021;318:107490.
doi: 10.1016/j.agee.2021.107490
De Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, et al. Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change. 2012;2:276–80.
doi: 10.1038/nclimate1368
Tang S, Guo J, Li S, Li J, Xie S, Zhai X, et al. Synthesis of soil carbon losses in response to conversion of grassland to agriculture land. Soil Tillage Res. 2019;185:29–35.
doi: 10.1016/j.still.2018.08.011
Juttner F, Watson SB. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol. 2007;73:4395–406.
pubmed: 17400777
pmcid: 1932821
doi: 10.1128/AEM.02250-06