Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 07 2023
Historique:
received: 09 12 2022
accepted: 28 06 2023
medline: 10 7 2023
pubmed: 9 7 2023
entrez: 8 7 2023
Statut: epublish

Résumé

During cell migration, front-rear polarity is spatiotemporally regulated; however, the underlying design of regulatory interactions varies. In rod-shaped Myxococcus xanthus cells, a spatial toggle switch dynamically regulates front-rear polarity. The polarity module establishes front-rear polarity by guaranteeing front pole-localization of the small GTPase MglA. Conversely, the Frz chemosensory system, by acting on the polarity module, causes polarity inversions. MglA localization depends on the RomR/RomX GEF and MglB/RomY GAP complexes that localize asymmetrically to the poles by unknown mechanisms. Here, we show that RomR and the MglB and MglC roadblock domain proteins generate a positive feedback by forming a RomR/MglC/MglB complex, thereby establishing the rear pole with high GAP activity that is non-permissive to MglA. MglA at the front engages in negative feedback that breaks the RomR/MglC/MglB positive feedback allosterically, thus ensuring low GAP activity at this pole. These findings unravel the design principles of a system for switchable front-rear polarity.

Identifiants

pubmed: 37422455
doi: 10.1038/s41467-023-39773-y
pii: 10.1038/s41467-023-39773-y
pmc: PMC10329633
doi:

Substances chimiques

Bacterial Proteins 0
Monomeric GTP-Binding Proteins EC 3.6.5.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4056

Informations de copyright

© 2023. The Author(s).

Références

Nat Microbiol. 2019 Aug;4(8):1344-1355
pubmed: 31110363
Proc Natl Acad Sci U S A. 1979 Nov;76(11):5952-6
pubmed: 42906
Nat Rev Mol Cell Biol. 2008 Aug;9(8):593-602
pubmed: 18648373
Methods Enzymol. 2005;404:611-9
pubmed: 16413304
Nat Commun. 2020 Apr 14;11(1):1772
pubmed: 32286308
J Bacteriol. 2012 Nov;194(21):5875-85
pubmed: 22923595
EMBO J. 2010 Jul 21;29(14):2276-89
pubmed: 20543819
Mol Microbiol. 2016 Feb;99(4):767-77
pubmed: 26538279
J Cell Biol. 2015 Jul 20;210(2):243-56
pubmed: 26169353
Dev Cell. 2017 May 8;41(3):299-314.e13
pubmed: 28486132
EMBO J. 2011 Aug 16;30(20):4185-97
pubmed: 21847100
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8841-6
pubmed: 19470486
J Biol Chem. 2021 Jan-Jun;296:100308
pubmed: 33493516
J Bacteriol. 2014 Jan;196(2):378-90
pubmed: 24187092
Mol Cell. 2017 Dec 7;68(5):823-824
pubmed: 29220648
Bioinformatics. 2019 Aug 15;35(16):2856-2858
pubmed: 30615063
Cell. 2018 Mar 8;172(6):1271-1293
pubmed: 29522747
BMC Bioinformatics. 2019 Sep 14;20(1):473
pubmed: 31521110
Annu Rev Biochem. 2011;80:943-71
pubmed: 21675921
Proc Natl Acad Sci U S A. 1977 Jul;74(7):2938-42
pubmed: 16592422
Nat Commun. 2019 Nov 22;10(1):5300
pubmed: 31757955
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747):
pubmed: 29632261
Genome Biol Evol. 2014 Dec 04;7(1):57-70
pubmed: 25480683
Trends Cell Biol. 2013 Oct;23(10):476-83
pubmed: 23731999
Bioessays. 2015 Nov;37(11):1193-201
pubmed: 26338468
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
Trends Cell Biol. 2020 Sep;30(9):720-735
pubmed: 32674938
Nature. 2002 Dec 12;420(6916):629-35
pubmed: 12478284
Nucleic Acids Res. 2022 Jul 5;50(W1):W276-W279
pubmed: 35412617
Annu Rev Microbiol. 2017 Sep 8;71:61-78
pubmed: 28525300
Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354
pubmed: 33156333
Nat Rev Mol Cell Biol. 2022 Aug;23(8):559-577
pubmed: 35440694
Annu Rev Cell Dev Biol. 2017 Oct 6;33:77-101
pubmed: 28783960
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
PLoS Biol. 2010 Jul 20;8(7):e1000430
pubmed: 20652021
Nat Microbiol. 2018 Aug;3(8):948-959
pubmed: 30013238
J Cell Biol. 2014 Jul 7;206(1):7-17
pubmed: 25002676
Proc Natl Acad Sci U S A. 1985 Dec;82(24):8767-70
pubmed: 3936045
Mol Microbiol. 2013 May;88(4):740-53
pubmed: 23551551
Nature. 2015 May 14;521(7551):173-179
pubmed: 25945739
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3378-82
pubmed: 8475084
J Bacteriol. 2015 Nov 16;198(3):510-20
pubmed: 26574508
Physiol Rev. 2013 Jan;93(1):269-309
pubmed: 23303910
Small GTPases. 2013 Apr-Jun;4(2):62-9
pubmed: 23511850
Nat Cell Biol. 2018 Sep;20(9):1052-1063
pubmed: 30061680
Science. 2003 Dec 5;302(5651):1704-9
pubmed: 14657486
Sci Rep. 2019 Feb 13;9(1):1969
pubmed: 30760735
PLoS Biol. 2019 Sep 27;17(9):e3000459
pubmed: 31560685
J Bacteriol. 2008 Apr;190(7):2411-21
pubmed: 18223089
Bioinformatics. 2009 May 1;25(9):1189-91
pubmed: 19151095
PLoS Genet. 2012;8(8):e1002872
pubmed: 22916026
FEMS Microbiol Rev. 2012 Jan;36(1):149-64
pubmed: 22091711
Cell. 2012 Oct 12;151(2):320-32
pubmed: 23039994
J Bacteriol. 1992 Jul;174(13):4246-57
pubmed: 1624419
J Bacteriol. 2008 Jan;190(2):613-24
pubmed: 17993514
Curr Biol. 2000 Sep 21;10(18):1143-6
pubmed: 10996798
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23859-23868
pubmed: 32900945
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28366-28373
pubmed: 33093210
Science. 2007 Feb 9;315(5813):853-6
pubmed: 17289998
Mol Microbiol. 2004 Sep;53(5):1501-13
pubmed: 15387825
EMBO J. 2007 Oct 31;26(21):4433-44
pubmed: 17932488
PLoS Genet. 2022 Sep 6;18(9):e1010384
pubmed: 36067225
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
PLoS Genet. 2020 Jun 22;16(6):e1008877
pubmed: 32569324
Curr Opin Cell Biol. 2022 Jun;76:102076
pubmed: 35367928
Cell. 2012 Sep 14;150(6):1196-208
pubmed: 22980980
Mol Microbiol. 2009 Nov;74(3):691-706
pubmed: 19775250
PLoS Genet. 2012 Sep;8(9):e1002951
pubmed: 23028358
Curr Biol. 2000 Nov 2;10(21):R774-6
pubmed: 11084347
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6):
pubmed: 35121662

Auteurs

Luís António Menezes Carreira (LAM)

Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.

Dobromir Szadkowski (D)

Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.

Stefano Lometto (S)

Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
Department of Chemistry and Center for Synthetic Microbiology, Philipps University, 35043, Marburg, Germany.

Georg K A Hochberg (GKA)

Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
Department of Chemistry and Center for Synthetic Microbiology, Philipps University, 35043, Marburg, Germany.

Lotte Søgaard-Andersen (L)

Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany. sogaard@mpi-marburg.mpg.de.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Kupffer cell reverse migration into the liver sinusoids mitigates neonatal sepsis and meningitis.

Bruna Araujo David, Jawairia Atif, Fernanda Vargas E Silva Castanheira et al.
1.00
Animals Kupffer Cells Mice Liver Cell Movement
Female Humans Gonadotropin-Releasing Hormone Stromal Cells Embryo Implantation

Classifications MeSH