Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 07 2023
08 07 2023
Historique:
received:
09
12
2022
accepted:
28
06
2023
medline:
10
7
2023
pubmed:
9
7
2023
entrez:
8
7
2023
Statut:
epublish
Résumé
During cell migration, front-rear polarity is spatiotemporally regulated; however, the underlying design of regulatory interactions varies. In rod-shaped Myxococcus xanthus cells, a spatial toggle switch dynamically regulates front-rear polarity. The polarity module establishes front-rear polarity by guaranteeing front pole-localization of the small GTPase MglA. Conversely, the Frz chemosensory system, by acting on the polarity module, causes polarity inversions. MglA localization depends on the RomR/RomX GEF and MglB/RomY GAP complexes that localize asymmetrically to the poles by unknown mechanisms. Here, we show that RomR and the MglB and MglC roadblock domain proteins generate a positive feedback by forming a RomR/MglC/MglB complex, thereby establishing the rear pole with high GAP activity that is non-permissive to MglA. MglA at the front engages in negative feedback that breaks the RomR/MglC/MglB positive feedback allosterically, thus ensuring low GAP activity at this pole. These findings unravel the design principles of a system for switchable front-rear polarity.
Identifiants
pubmed: 37422455
doi: 10.1038/s41467-023-39773-y
pii: 10.1038/s41467-023-39773-y
pmc: PMC10329633
doi:
Substances chimiques
Bacterial Proteins
0
Monomeric GTP-Binding Proteins
EC 3.6.5.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4056Informations de copyright
© 2023. The Author(s).
Références
Nat Microbiol. 2019 Aug;4(8):1344-1355
pubmed: 31110363
Proc Natl Acad Sci U S A. 1979 Nov;76(11):5952-6
pubmed: 42906
Nat Rev Mol Cell Biol. 2008 Aug;9(8):593-602
pubmed: 18648373
Methods Enzymol. 2005;404:611-9
pubmed: 16413304
Nat Commun. 2020 Apr 14;11(1):1772
pubmed: 32286308
J Bacteriol. 2012 Nov;194(21):5875-85
pubmed: 22923595
EMBO J. 2010 Jul 21;29(14):2276-89
pubmed: 20543819
Mol Microbiol. 2016 Feb;99(4):767-77
pubmed: 26538279
J Cell Biol. 2015 Jul 20;210(2):243-56
pubmed: 26169353
Dev Cell. 2017 May 8;41(3):299-314.e13
pubmed: 28486132
EMBO J. 2011 Aug 16;30(20):4185-97
pubmed: 21847100
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8841-6
pubmed: 19470486
J Biol Chem. 2021 Jan-Jun;296:100308
pubmed: 33493516
J Bacteriol. 2014 Jan;196(2):378-90
pubmed: 24187092
Mol Cell. 2017 Dec 7;68(5):823-824
pubmed: 29220648
Bioinformatics. 2019 Aug 15;35(16):2856-2858
pubmed: 30615063
Cell. 2018 Mar 8;172(6):1271-1293
pubmed: 29522747
BMC Bioinformatics. 2019 Sep 14;20(1):473
pubmed: 31521110
Annu Rev Biochem. 2011;80:943-71
pubmed: 21675921
Proc Natl Acad Sci U S A. 1977 Jul;74(7):2938-42
pubmed: 16592422
Nat Commun. 2019 Nov 22;10(1):5300
pubmed: 31757955
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747):
pubmed: 29632261
Genome Biol Evol. 2014 Dec 04;7(1):57-70
pubmed: 25480683
Trends Cell Biol. 2013 Oct;23(10):476-83
pubmed: 23731999
Bioessays. 2015 Nov;37(11):1193-201
pubmed: 26338468
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
Trends Cell Biol. 2020 Sep;30(9):720-735
pubmed: 32674938
Nature. 2002 Dec 12;420(6916):629-35
pubmed: 12478284
Nucleic Acids Res. 2022 Jul 5;50(W1):W276-W279
pubmed: 35412617
Annu Rev Microbiol. 2017 Sep 8;71:61-78
pubmed: 28525300
Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354
pubmed: 33156333
Nat Rev Mol Cell Biol. 2022 Aug;23(8):559-577
pubmed: 35440694
Annu Rev Cell Dev Biol. 2017 Oct 6;33:77-101
pubmed: 28783960
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
PLoS Biol. 2010 Jul 20;8(7):e1000430
pubmed: 20652021
Nat Microbiol. 2018 Aug;3(8):948-959
pubmed: 30013238
J Cell Biol. 2014 Jul 7;206(1):7-17
pubmed: 25002676
Proc Natl Acad Sci U S A. 1985 Dec;82(24):8767-70
pubmed: 3936045
Mol Microbiol. 2013 May;88(4):740-53
pubmed: 23551551
Nature. 2015 May 14;521(7551):173-179
pubmed: 25945739
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3378-82
pubmed: 8475084
J Bacteriol. 2015 Nov 16;198(3):510-20
pubmed: 26574508
Physiol Rev. 2013 Jan;93(1):269-309
pubmed: 23303910
Small GTPases. 2013 Apr-Jun;4(2):62-9
pubmed: 23511850
Nat Cell Biol. 2018 Sep;20(9):1052-1063
pubmed: 30061680
Science. 2003 Dec 5;302(5651):1704-9
pubmed: 14657486
Sci Rep. 2019 Feb 13;9(1):1969
pubmed: 30760735
PLoS Biol. 2019 Sep 27;17(9):e3000459
pubmed: 31560685
J Bacteriol. 2008 Apr;190(7):2411-21
pubmed: 18223089
Bioinformatics. 2009 May 1;25(9):1189-91
pubmed: 19151095
PLoS Genet. 2012;8(8):e1002872
pubmed: 22916026
FEMS Microbiol Rev. 2012 Jan;36(1):149-64
pubmed: 22091711
Cell. 2012 Oct 12;151(2):320-32
pubmed: 23039994
J Bacteriol. 1992 Jul;174(13):4246-57
pubmed: 1624419
J Bacteriol. 2008 Jan;190(2):613-24
pubmed: 17993514
Curr Biol. 2000 Sep 21;10(18):1143-6
pubmed: 10996798
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23859-23868
pubmed: 32900945
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28366-28373
pubmed: 33093210
Science. 2007 Feb 9;315(5813):853-6
pubmed: 17289998
Mol Microbiol. 2004 Sep;53(5):1501-13
pubmed: 15387825
EMBO J. 2007 Oct 31;26(21):4433-44
pubmed: 17932488
PLoS Genet. 2022 Sep 6;18(9):e1010384
pubmed: 36067225
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
PLoS Genet. 2020 Jun 22;16(6):e1008877
pubmed: 32569324
Curr Opin Cell Biol. 2022 Jun;76:102076
pubmed: 35367928
Cell. 2012 Sep 14;150(6):1196-208
pubmed: 22980980
Mol Microbiol. 2009 Nov;74(3):691-706
pubmed: 19775250
PLoS Genet. 2012 Sep;8(9):e1002951
pubmed: 23028358
Curr Biol. 2000 Nov 2;10(21):R774-6
pubmed: 11084347
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6):
pubmed: 35121662