Calcium (Ca
Abiotic stress
Ca2+ sensors
JAs biosynthesis
MYC2
Plants
Stress sensing
Journal
Plant biology (Stuttgart, Germany)
ISSN: 1438-8677
Titre abrégé: Plant Biol (Stuttg)
Pays: England
ID NLM: 101148926
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
25
01
2023
accepted:
27
06
2023
medline:
13
11
2023
pubmed:
9
7
2023
entrez:
9
7
2023
Statut:
ppublish
Résumé
Plants evolve stress-specific responses that sense changes in their external environmental conditions and develop various mechanisms for acclimatization and survival. Calcium (Ca
Substances chimiques
Calcium
SY7Q814VUP
jasmonic acid
6RI5N05OWW
Cyclopentanes
0
Basic Helix-Loop-Helix Transcription Factors
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1025-1034Subventions
Organisme : National Major Research and Development Plan
ID : 2022YPD1200503
Organisme : National Natural Science Foundation of China
ID : 31872045
Organisme : National Natural Science Foundation of China
ID : 31601743
Organisme : National Natural Science Foundation of China
ID : 31772252
Organisme : National Natural Science Foundation of China
ID : 31972356
Informations de copyright
© 2023 John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
Références
Ahmad P., Rasool S., Gul A., Sheikh S.A., Akram N.A., Ashraf M., Kazi A.M., Gucel S. (2016) Jasmonates: multifunctional roles in stress tolerance. Frontiers in Plant Science, 7, 813.
Ali M., Baek K.-H. (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences, 21, 621.
An C., Deng L., Zhai H., You Y., Wu F., Zhai Q., Goossens A., Li C. (2022) Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Molecular Plant, 15(8), 1329-1346.
Aslam S., Gul N., Mir M.A., Asgher M., Al-Sulami N., Abulfaraj A.A., Qari S. (2021) Role of jasmonates, calcium, and glutathione in plants to combat abiotic stresses through precise signaling cascade. Frontiers in Plant Science, 12, 668029.
Bae K.-S., Rahimi S., Kim Y.-J., Devi B.S.R., Khorolragchaa A., Sukweenadhi J., Silva J., Myagmarjav D., Yang D.-C. (2021) Molecular characterization of lipoxygenase genes and their expression analysis against biotic and abiotic stresses in Panax ginseng. European Journal of Plant Pathology, 145, 331-343.
Bergey D.R., Ryan C.A. (1999) Wound- and systemin-inducible calmodulin gene expression in tomato leaves. Plant Molecular Biology, 40, 815-823.
Capiati D.A., País S.M., Téllez-Iñón M.T. (2006) Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. Journal of Experimental Botany, 57, 2391-2400.
Chen R., Jiang H., Li L., Zhai Q., Qi L., Zhou W., Liu X., Li H., Zheng W., Sun J., Li C. (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. The Plant Cell, 24, 2898-2916.
Chen X., Jiang W., Tong T., Chen G., Zeng F., Jang S., Gao W., Li Z., Mak M., Deng F. (2021) Molecular interaction and evolution of jasmonate signaling with transport and detoxification of heavy metals and metalloids in plants. Frontiers in Plant Science, 12, 665842.
Cheng Z., Sun L., Qi T., Zhang B., Peng W., Liu Y., Xie D. (2011) The bHLH transcription factor MYC3 interacts with the jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Molecular Plant, 4, 279-288.
Chini A., Gimenez-Ibanez S., Goossens A., Solano R. (2016) Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology, 33, 147-156.
Clarke S.M., Cristescu S.M., Miersch O., Harren F.J., Wasternack C., Mur L.A. (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist, 182, 175-187.
DeOllas C., Arbona V., Gomez-Cadenas A., Dodd I.C. (2018) Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. Journal of Experimental Botany, 69, 2103-2116.
DeOllas C., Hernando B., Arbona V., Gómez-Cadenas A. (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiologia Plantarum, 147, 296-306.
Du Q.L., Fang Y.P., Jiang J.M., Chen M.Q., Li X.Y., Xin X.I.E. (2022) Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor. Journal of Integrative Agriculture, 21(12), 3540-3555.
Edel K.H., Marchadier E., Brownlee C., Kudla J., Hetherington A.M. (2017) The evolution of calcium-based signalling in plants. Current Biology, 27(13), R667-R679.
Elbagoury M.M., Turoop L., Runo S., Sila D.N. (2021) Regulatory influences of methyl jasmonate and calcium chloride on chilling injury of banana fruit during cold storage and ripening. Food Science Nutrition, 9, 929-942.
Elfving N., Davoine C., Benlloch R., Blomberg J., Brannstrom K., Mueller D., Nilsson A., Ulfstedt M., Ronne H., Wingsle G., Nilsson O., Bjorklund S. (2011) The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proceedings of the National Academy of Sciences of the United States of America, 108, 8245-8250.
Eremina M., Rozhon W., Poppenberger B. (2016) Hormonal control of cold stress responses in plants. Cellular Molecular Life Sciences, 73, 797-810.
Farhangi-Abriz S., Ghassemi-Golezani K. (2019) Jasmonates: mechanisms and functions in abiotic stress tolerance of plants. Biocatalysis and Agricultural Biotechnology, 20, 101210.
Farhangi-Abriz S., Torabian S. (2017) Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology Environmental Safety, 137, 64-70.
Fu J., Liu L., Liu Q., Shen Q., Wang C., Yang P., Zhu C., Wang Q. (2020) ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Reports, 39, 273-288.
Fu L., Yu X., An C. (2013) Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. Plant Physiology and Biochemistry, 73, 202-210.
Fu L., Yu X., An C. (2014) OsCPK20 positively regulates Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. Acta Physiologiae Plantarum, 36, 273-282.
Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K. (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436-442.
Ghosh S., Bheri M., Bisht D., Pandey G.K. (2022) Calcium signaling and transport machinery: potential for development of stress tolerance in plants. Current Plant Biology, 29, 100235.
Gifford J.L., Walsh M.P., Vogel H.J. (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical Journal, 405, 199-221.
Gul N., Ahmad P., Wani T.A., Tyagi A., Aslam S. (2022) Glutathione improves low temperature stress tolerance in pusa sheetal cultivar of Solanum lycopersicum. Scientific Reports, 12, 1-13.
Hashimoto K., Kudla J. (2011) Calcium decoding mechanisms in plants. Biochimie, 93, 2054-2059.
Hettenhausen C., Yang D.-H., Baldwin I.T., Wu J. (2013) Calcium-dependent protein kinases, CDPK4 and CDPK5, affect early steps of jasmonic acid biosynthesis in Nicotiana attenuata. Plant Signaling & Behavior, 8, e22784.
Hossain M.A., Munemasa S., Uraji M., Nakamura Y., Mori I.C., Murata Y. (2011) Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiology, 156, 430-438.
Hou X., Lee L.Y.C., Xia K., Yan Y., Yu H. (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Developmental Cell, 19, 884-894.
Howe G.A., Major I.T., Koo A.J. (2018) Modularity in jasmonate signaling for multistress resilience. Annual Review of Plant Biology, 69, 387-415.
Hu C., Wu S., Li J., Dong H., Zhu C., Sun T., Hu Z., Foyer C.H., Yu J. (2022) Herbivore-induced Ca2+ signals trigger a jasmonate burst by activating ERF16-mediated expression in tomato. New Phytologist, 236, 1796-1808.
Hu X., Wansha L., Chen Q., Yang Y. (2009) Early signal transduction linking the synthesis of jasmonic acid in plant. Plant Signaling & Behavior, 4, 696-697.
Huang H., Liu B., Liu L., Song S. (2017) Jasmonate action in plant growth and development. Journal of Experimental Botany, 68, 1349-1359.
Jung C., Lyou S.H., Yeu S., Kim M.A., Rhee S., Kim M., Lee J.S., Choi Y.D., Cheong J.-J. (2007) Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports, 26, 1053-1063.
Kashyap P., Deswal R. (2019) Phytohormones regulating the master regulators of CBF dependent cold stress signaling pathway. In: Rajal V.R., Sehgal D., Kumar A., Raina S.N. (Eds), Genetic enhancement of crops for tolerance to abiotic stress: Mechanisms and approaches, Vol. I. Springer, Berlin Germany, pp 249-264.
Katsir L., Chung H.S., Koo A.J.K., Howe G.A. (2008) Jasmonate signaling: a conserved mechanism of hormone sensing. Current Opinion in Plant Biology, 11, 428-435.
Kazan K. (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 20, 219-229.
Khan F.S., Gan Z.-M., Li E.-Q., Ren M.-K., Hu C.-G., Zhang J.-Z. (2022b) Transcriptomic and physiological analysis reveals interplay between salicylic acid and drought stress in citrus tree floral initiation. Planta, 255, 1-22.
Khan F.S., Goher F., Zhang D., Shi P., Li Z., Htwe Y.M., Wang Y. (2022a) Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits. Frontiers in Plant Science, 13, 1042828.
Khan M.N., Siddiqui M.H., AlSolami M.A., Alamri S., Hu Y., Ali H.M., Al-Amri A.A., Alsubaie Q.D., Al-Munqedhi B.M., Al-Ghamdi A. (2020) Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiology Biochemistry, 156, 278-290.
Larrieu A., Vernoux T. (2016) Q&A: how does jasmonate signaling enable plants to adapt and survive? BMC Biology, 14, 79.
Li B., Hou L., Song C., Wang Z., Xue Q., Li Y., Qin J., Cao N., Jia C., Zhang Y. (2022) Biological function of calcium-sensing receptor (CAS) and its coupling calcium signaling in plants. Plant Physiology & Biochemistry, 180, 74-80.
Li L., Lu X., Ma H., Lyu D. (2017) Jasmonic acid regulates the ascorbate-glutathione cycle in Malus baccata Borkh. roots under low root-zone temperature. Acta Physiologia Plantarum, 39, 174.
Li Y., Yang X., Li X. (2019) Role of jasmonate signaling pathway in resistance to dehydration stress in Arabidopsis. Acta Physiologiae Plantarum, 41, 100.
Liu H., Che Z., Zeng X., Zhou X., Sitoe H.M., Wang H., Yu D. (2016) Genome-wide analysis of calcium-dependent protein kinases and their expression patterns in response to herbivore and wounding stresses in soybean. Functional & Integrative Genomics, 16, 481-493.
Liu Y., Du M., Deng L., Shen J., Fang M., Chen Q., Lu Y., Wang Q., Li C., Zhai Q. (2019) MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. The Plant Cell, 31, 106-127.
Lorenzo O., Chico J.M., Sánchez-Serrano J.J., Solano R. (2004) JASMONATE-INSENSITIVE1Encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. The Plant Cell, 16, 1938-1950.
Ludwig A.A., Saitoh H., Felix G., Freymark G., Miersch O., Wasternack C., Boller T., Jones J.D., Romeis T. (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceedings of the National Academy of Sciences of the United States of Ame, 102, 10736-10741.
Lyons R., Manners J.M., Kazan K. (2013) Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Reports, 32, 815-827.
Manik S., Shi S., Mao J., Dong L., Su Y., Wang Q., Liu H. (2015) The calcium sensor CBL-CIPK is involved in plant's response to abiotic stresses. International Journal of Genomics, 2015, 493191.
McCormack E., Tsai Y.C., Braam J. (2005) Handling calcium signaling: arabidopsis CaMs and CMLs. Trends in Plant Science, 10(8), 383-389.
Meena M.K., Ghawana S., Dwivedi V., Roy A., Chattopadhyay D. (2015) Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco. Frontiers in Plant Science, 6, 683.
Meng L., Zhang T., Geng S., Scott P.B., Li H., Chen S. (2019) Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis. Journal of Proteomics, 196, 81-91.
Mukta R.H., Khatun M.R., Nazmul Huda A. (2019) Calcium induces phytochelatin accumulation to cope with chromium toxicity in rice (Oryza sativa L.). Journal of Plant Interactions, 14, 295-302.
Munir S., Liu H., Xing Y., Hussain S., Ouyang B., Zhang Y., Li H., Ye Z. (2016) Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Scientific Reports, 6, 1-20.
Naeem M., Traub J.R., Athar H.-U.-R., Loescher W. (2020) Exogenous calcium mitigates heat stress effects in common bean: a coordinated impact of photoprotection of PSII, up-regulating antioxidants, and carbohydrate metabolism. Acta Physiologiae Plantarum, 42, 1-13.
Ndamukong I., Abdallat A.A., Thurow C., Fode B., Zander M., Weigel R., Gatz C. (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. The Plant Journal, 50, 128-139.
Ndiaye A., Diallo A.O., Fall N.C., Diouf R.D., Diouf D., Kane N.A. (2022) Transcriptomic analysis of methyl jasmonate treatment reveals gene networks involved in drought tolerance in pearl millet. Scientific Reports, 12, 1-13.
Oliw E.H. (2022) Iron and manganese lipoxygenases of plant pathogenic fungi and their role in biosynthesis of jasmonates. Archives of Biochemistry and Biophysics, 722, 109169.
Ortigosa A., Fonseca S., Franco-Zorrilla J.M., Fernández-Calvo P., Zander M., Lewsey M.G., García-Casado G., Fernández-Barbero G., Ecker J.R., Solano R. (2020) The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. The Plant Journal, 102, 138-152.
Pandita D. (2022) Jasmonates: key players in plant stress tolerance. In: Naeem M., Aftab T. (Eds), Emerging plant growth regulators in agriculture. Elsevier, Amsterdam, the Netherlands, pp 165-192.
Pauwels L., Barbero G.F., Geerinck J., Tilleman S., Grunewald W., Pérez A.C., Chico J.M., Bossche R.V., Sewell J., Gil E. (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature, 464, 788-791.
Per T.S., Khan M.I.R., Anjum N.A., Masood A., Hussain S.J., Khan N.A. (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environmental and Experimental Botany, 145, 104-120.
Pigolev A., Miroshnichenko D., Dolgov S., Savchenko T. (2021) Regulation of sixth seminal root formation by jasmonate in Triticum aestivum L. Plants, 10, 219.
Pirayesh N., Giridhar M., Khedher A.B., Vothknecht U.C., Chigri F. (2021) Organellar calcium signaling in plants: an update. Biochimica et Biophysica Acta - Molecular Cell Research, 1868, 118948.
Qin Y., Yang J., Zhao J. (2005) Calcium changes and the response to methyl jasmonate in rice lodicules during anthesis. Protoplasma, 225, 103-112.
Raya-González J., Bucio J.L. (2022) Jasmonic acid in root patterning mechanisms: wound healing, regeneration, and cell fate decisions. In: Ramakrishna A., Sirihindi G. (Eds), Jasmonates and brassinosteroids in plants: metabolism, signaling and biotechnological applications. CRC Press, Boca Raton, FL, USA, pp 119-126.
Ruge H., Flosdorff S., Ebersberger I., Chigri F., Vothknecht U.C. (2016) The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence. Journal of Experimental Botany, 67, 3985-3996.
Sanchez-Romera B. (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant, Cell and Environment, 37, 995-1008.
Shabbir R., Javed T., Hussain S., Ahmar S., Naz M., Zafar H., Pandey S., Chauhan J., Siddiqui M.H., Pinghua C. (2022) Calcium homeostasis and potential roles to combat environmental stresses in plants. South African Journal of Botany, 148, 683-693.
Shafique Khan F., Zeng R.-F., Gan Z.-M., Zhang J.-Z., Hu C.-G. (2021) Genome-wide identification and expression profiling of the WOX gene family in Citrus sinensis and functional analysis of a CsWUS member. International Journal of Molecular Sciences, 22, 4919.
Sharma M., Laxmi A. (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Frontiers in Plant Science, 6, 1129.
Sheard L.B., Tan X., Mao H., Withers J., Ben-Nissan G., Hinds T.R., Kobayashi Y., Hsu F.-F., Sharon M., Browse J. (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature, 468, 400-405.
Shi S., Li S., Asim M., Mao J., Xu D., Ullah Z., Liu G., Wang Q., Liu H. (2018) The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. International Journal of Molecular Sciences, 19, 1900.
Siddiqi K.S., Husen A. (2019) Plant response to jasmonates: current developments and their role in changing environment. Bulletin of the National Research Centre, 43, 1-11.
Siddiqui M.H., Mukherjee S., Alamri S., Ali H.M., Hasan Z., Kalaji H.M. (2022) Calcium and jasmonic acid exhibit synergistic effects in mitigating arsenic stress in tomato seedlings accompanied by antioxidative defense, increased nutrient accumulation and upregulation of glyoxalase system. South African Journal of Botany, 150, 14-25.
Straub T., Ludewig U., Neuhäuser B. (2017) The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. The Plant Cell, 29, 409-422.
Sun Q.-P., Guo Y., Sun Y., Sun D.-Y., Wang X.-J. (2006) Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+] cyt and JR1 expression in Arabidopsis thaliana. Journal of Plant Research, 119, 343-350.
Sun Q.-P., Yu Y.-K., Wan S.-X., Zhao F.-K., Hao Y.-L. (2009) Is there crosstalk between extracellular and intracellular calcium mobilization in jasmonic acid signaling. Plant Growth Regulation, 57, 7-13.
Taki N., Sasaki-Sekimoto Y., Obayashi T., Kikuta A., Kobayashi K., Ainai T., Yagi K., Sakurai N., Suzuki H., Masuda T. (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiology, 139, 1268-1283.
Vadassery J., Reichelt M., Hause B., Gershenzon J., Boland W., Mithöfer A. (2012b) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiology, 159, 1159-1175.
Vadassery J., Scholz S.S., Mithöfer A. (2012a) Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion. Plant Signaling & Behavior, 7, 1277-1280.
Van Moerkercke A., Duncan O., Zander M., Šimura J., Broda M., Bossche R.V., Lewsey M.G., Lama S., Singh K.B., Ljung K. (2019) A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of Ame, 116, 23345-23356.
Vanderbeld B., Snedden W.A. (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Molecular Biology, 64, 683-697.
Vives-Peris V., Marmaneu D., Gómez-Cadenas A., Pérez-Clemente R. (2018) Characterization of Citrus WRKY transcription factors and their responses to phytohormones and abiotic stresses. Biologia Plantarum, 62, 33-44.
Walter A., Mazars C., Maitrejean M., Hopke J., Ranjeva R., Boland W., Mithöfer A. (2007) Structural requirements of jasmonates and synthetic analogues as inducers of Ca2+ signals in the nucleus and the cytosol of plant cells. Angewandte Chemie, International Edition, 46, 4783-4785.
Wang H., Li S., Li Y.-A., Xu Y., Wang Y., Zhang R., Sun W., Chen Q., Wang X.-J., Li C., Zhao J. (2019a) MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signalling. Nature Plants, 5, 616-625.
Wang X., Zhu B., Jiang Z., Wang S. (2019b) Calcium-mediation of jasmonate biosynthesis and signaling in plants. Plant Science, 287, 110192.
Wang Y., Xu H., Liu W., Wang N., Qu C., Jiang S., Fang H., Zhang Z., Chen X. (2019c) Methyl jasmonate enhances apple'scold tolerance through the JAZ-MYC2 pathway. Plant, Cell, Tissue and Organ Culture, 136, 75-84.
Wasternack C. (2014) Action of jasmonates in plant stress responses and development and applied aspects. Biotechnology Advances, 32, 31-39.
Wasternack C., Hause B. (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111, 1021-1058.
Wasternack C., Song S. (2017) Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany, 68, 1303-1321.
Wasternack C., Strnad M. (2019) Jasmonates are signals in the biosynthesis of secondary metabolites-pathways, transcription factors and applied aspects-a brief review. New Biotechnology, 48, 1-11.
Wu F., Deng L., Zhai Q., Zhao J., Chen Q., Li C. (2020) Mediator subunit MED25 couples alternative splicing of genes with fine-tuning of Jasmonate signaling. The Plant Cell, 32, 429-448.
Xing Q., Zhang X., Li Y., Shao Q., Cao S., Wang F., Qi H. (2019) The lipoxygenase CmLOX13 from oriental melon enhanced severe drought tolerance via regulating ABA accumulation and stomatal closure in Arabidopsis. Environmental and Experimental Botany, 167, 103815.
Xu T., Niu J., Jiang Z. (2022) Sensing mechanisms: calcium signaling mediated abiotic stress in plants. Frontiers in Plant Science, 13, 925863.
Yamakawa H., Mitsuhara I., Ito N., Seo S., Kamada H., Ohashi Y. (2001) Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. European Journal of Biochemistry, 268, 3916-3929.
Yang J., Zhang X., Huang Y., Feng Y., Li Y. (2015) OsCBL1 modulates lateral root elongation in rice via affecting endogenous indole-3-acetic acid biosynthesis. Journal of Genetics & Genomics, 42, 331-334.
Yang T., Poovaiah B. (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. Journal of Biological Chemistry, 277, 45049-45058.
Yastreb T., Kolupaev Y.E., Lugovaya A., Dmitriev A.P. (2016) Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling. Applied Biochemistry Microbiology, 52, 210-215.
Yen T.C. (2014) The role of calcineurin B-like 10 in flowers during growth in saline conditions.
You Y., Zhai Q., An C., Li C. (2019) LEUNIG_HOMOLOG mediates MYC2-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. The Plant Cell, 31, 2187-2205.
Zhai Q., Li C. (2019) The plant mediator complex and its role in jasmonate signaling. Journal of Experimental Botany, 70, 3415-3424.
Zhang F., Yao J., Ke J., Zhang L., Lam V.Q., Xin X.-F., Zhou X.E., Chen J., Brunzelle J., Griffin P.R. (2015) Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature, 525, 269-273.
Zhang Q., Feng Y.-X., Tian P., Lin Y.-J., Yu X.-Z. (2022) Proline-mediated regulation on jasmonate signals repressed anthocyanin accumulation through the MYB-bHLH-WDR complex in rice under chromium exposure. Frontiers in Plant Science, 13, 953398.
Zhang Y., Lv Y., Jahan N., Chen G., Ren D., Guo L. (2018) Sensing of abiotic stress and ionic stress responses in plants. International Journal of Molecular Sciences, 19, 3298.
Zhao M.-L., Wang J.-N., Shan W.E.I., Fan J.-G., Kuang J.-F., Wu K.-Q., Li X.-P., Chen W.-X., He F.-Y., Chen J.-Y., Lu W.-J. (2013) Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant, Cell and Environment, 36, 30-51.
Zhao Y., Dong W., Zhang N., Ai X., Wang M., Huang Z., Xiao L., Xia G. (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiology, 164, 1068-1076.
Zhou Y., Zeng L., Hou X., Liao Y., Yang Z. (2020) Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 71, 2172-2185.
Zhuang Y., Wang X., Llorca L.C., Lu J., Lou Y., Li R. (2022) Role of jasmonate signaling in rice resistance to the leaf folder Cnaphalocrocis medinalis. Plant Molecular Biology, 109, 627-637.