High-Pressure Processing of Human Milk: A Balance between Microbial Inactivation and Bioactive Protein Preservation.
antibody
breast milk
enzyme
infant nutrition
microbial inactivation
mother’s milk
premature infant
preterm infant
protease
thermal processing
Journal
The Journal of nutrition
ISSN: 1541-6100
Titre abrégé: J Nutr
Pays: United States
ID NLM: 0404243
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
10
05
2023
revised:
30
06
2023
accepted:
05
07
2023
pmc-release:
08
07
2024
medline:
11
9
2023
pubmed:
10
7
2023
entrez:
9
7
2023
Statut:
ppublish
Résumé
Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins. We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins. Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay. Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor. Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.
Sections du résumé
BACKGROUND
Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins.
OBJECTIVES
We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins.
METHODS
Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay.
RESULTS
Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor.
CONCLUSION
Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.
Identifiants
pubmed: 37423385
pii: S0022-3166(23)72480-2
doi: 10.1016/j.tjnut.2023.07.001
pmc: PMC10517232
pii:
doi:
Substances chimiques
Lactoferrin
EC 3.4.21.-
Vascular Endothelial Growth Factor A
0
Immunoglobulin A
0
Immunoglobulin M
0
Pancreatic Elastase
EC 3.4.21.36
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2598-2611Informations de copyright
Copyright © 2023 American Society for Nutrition. Published by Elsevier Inc. All rights reserved.
Références
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13846-51
pubmed: 25201963
J Perinat Med. 2010 Jul;38(4):347-51
pubmed: 20443660
Clin Exp Immunol. 1993 Oct;94(1):220-4
pubmed: 8403511
J Pediatr Gastroenterol Nutr. 2018 Jul;67(1):90-96
pubmed: 29543698
Food Chem. 2022 Jun 15;379:132138
pubmed: 35063849
Microbiol Immunol. 2007;51(7):643-8
pubmed: 17641466
Front Nutr. 2020 Nov 12;7:552362
pubmed: 33282897
Front Microbiol. 2019 Jun 10;10:1275
pubmed: 31244800
Br Med J. 1972 Jan 8;1(5792):69-75
pubmed: 4550126
J Perinatol. 2001 Jun;21(4):249-54
pubmed: 11533843
Acta Paediatr. 2011 Dec;100(12):1548-54
pubmed: 21707744
Comput Biol Chem. 2009 Dec;33(6):445-50
pubmed: 19896904
Acta Paediatr. 2007 Oct;96(10):1445-9
pubmed: 17714541
Front Nutr. 2020 Aug 14;7:130
pubmed: 32923453
Am J Clin Nutr. 2003 May;77(5):1234-40
pubmed: 12716677
J Hum Lact. 2005 Feb;21(1):22-30
pubmed: 15681632
Eur J Microbiol Immunol (Bp). 2020 Jun 19;10(2):98-106
pubmed: 32644940
BMC Pediatr. 2014 May 13;14:123
pubmed: 24884424
Microbiologyopen. 2019 Jan;8(1):e00618
pubmed: 29577668
J Food Prot. 2008 Jan;71(1):109-18
pubmed: 18236670
BMC Pediatr. 2012 Aug 17;12:124
pubmed: 22900590
J Food Sci. 2008 Nov;73(9):M423-9
pubmed: 19021813
J Pediatr Gastroenterol Nutr. 2013 May;56(5):560-8
pubmed: 23274339
Lancet. 2001 Feb 10;357(9254):413-9
pubmed: 11273059
Arch Dis Child. 1980 Jun;55(6):417-21
pubmed: 7002055
Science. 2000 Feb 4;287(5454):860-4
pubmed: 10657301
Biochemistry. 2017 Jul 25;56(29):3710-3724
pubmed: 28666084
J Proteome Res. 2015 May 1;14(5):2143-57
pubmed: 25757574
J Infect. 2020 Jan;80(1):121-142
pubmed: 31560881
Science. 2000 Aug 18;289(5482):1185-8
pubmed: 10947984
J Appl Microbiol. 2003;95(3):471-8
pubmed: 12911694
Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1552-5
pubmed: 9465053
Breastfeed Med. 2020 Sep;15(9):583-588
pubmed: 32856945
Curr Opin Clin Nutr Metab Care. 2010 May;13(3):314-20
pubmed: 20179589
J Chromatogr A. 2012 Mar 2;1227:219-33
pubmed: 22277183
Int J Food Microbiol. 2002 Nov 15;79(1-2):27-34
pubmed: 12382682
Biochem Cell Biol. 2012 Jun;90(3):233-44
pubmed: 22540735
J Dairy Sci. 2010 Mar;93(3):877-83
pubmed: 20172207
Front Nutr. 2022 Sep 15;9:926814
pubmed: 36185694
J Pediatr. 2016 Jun;173 Suppl:S4-9
pubmed: 27234410
Pediatr Res. 1986 Aug;20(8):711-5
pubmed: 3737281
Foodborne Pathog Dis. 2006 Winter;3(4):384-92
pubmed: 17199520
J R Soc Interface. 2018 Oct 3;15(147):
pubmed: 30282759
Front Public Health. 2018 Nov 06;6:306
pubmed: 30460221
Arch Dis Child Fetal Neonatal Ed. 2013 Nov;98(6):F559-62
pubmed: 23893267
Eur J Biochem. 1994 Apr 15;221(2):617-30
pubmed: 8174542
J Food Prot. 2005 Jul;68(7):1484-6
pubmed: 16013392
Biochim Biophys Acta. 1985 Jul 31;835(3):477-90
pubmed: 4016142
Breastfeed Med. 2010 Jun;5(3):117-21
pubmed: 20509779
J Pediatr Gastroenterol Nutr. 2021 May 1;72(5):756-762
pubmed: 33847290
J Appl Microbiol. 1997 Jun;82(6):735-42
pubmed: 9202439
Pediatr Res. 1994 Jan;35(1):117-24
pubmed: 8134189
J Food Prot. 2010 Jan;73(1):140-202
pubmed: 20051217
BMC Microbiol. 2009 May 07;9:82
pubmed: 19422689
Acta Paediatr. 2008 Aug;97(8):1070-4
pubmed: 18477059
J Dairy Sci. 2018 Apr;101(4):2814-2818
pubmed: 29397184
Infect Immun. 1980 Jun;28(3):893-8
pubmed: 6772569
Compr Rev Food Sci Food Saf. 2021 May;20(3):2825-2881
pubmed: 33960599
Microorganisms. 2021 Sep 04;9(9):
pubmed: 34576773
Front Immunol. 2020 May 28;11:1221
pubmed: 32574271
J Pediatr Gastroenterol Nutr. 2017 Mar;64(3):353-361
pubmed: 27755345
Front Pediatr. 2018 Nov 16;6:323
pubmed: 30519550
J Nutr. 1985 Sep;115(9):1209-16
pubmed: 3928842
Proteomics. 2006 Apr;6(7):2208-16
pubmed: 16502470
Pediatrics. 2007 Oct;120(4):e953-9
pubmed: 17908750
Int J Environ Res Public Health. 2021 Feb 22;18(4):
pubmed: 33671763
Foods. 2021 Dec 01;10(12):
pubmed: 34945507
Food Chem. 2022 Mar 30;373(Pt A):131413
pubmed: 34700038
J Hum Lact. 2005 Nov;21(4):439-43
pubmed: 16280560
Adv Exp Med Biol. 2004;554:407-9
pubmed: 15384612
J Nutr. 2019 Mar 1;149(3):497-504
pubmed: 30770541
Foods. 2020 Aug 27;9(9):
pubmed: 32867028
Biosci Biotechnol Biochem. 1999 Aug;63(8):1321-8
pubmed: 10500993
J Pediatr Gastroenterol Nutr. 2018 Feb;66(2):318-324
pubmed: 28906320
J Biol Chem. 1993 Sep 15;268(26):19292-8
pubmed: 8366079
BMC Bioinformatics. 2015 Mar 26;16:101
pubmed: 25885484
Am J Dis Child. 1989 Dec;143(12):1485-91
pubmed: 2589284