Viral manipulation of cell polarity signalling.

Cell polarity Crumbs PDZ domain Par Scribble Viruses

Journal

Biochimica et biophysica acta. Molecular cell research
ISSN: 1879-2596
Titre abrégé: Biochim Biophys Acta Mol Cell Res
Pays: Netherlands
ID NLM: 101731731

Informations de publication

Date de publication:
10 2023
Historique:
received: 08 03 2023
revised: 24 06 2023
accepted: 04 07 2023
medline: 16 8 2023
pubmed: 13 7 2023
entrez: 12 7 2023
Statut: ppublish

Résumé

Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.

Identifiants

pubmed: 37437846
pii: S0167-4889(23)00108-8
doi: 10.1016/j.bbamcr.2023.119536
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

119536

Informations de copyright

Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Airah Javorsky (A)

Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.

Patrick O Humbert (PO)

Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.

Marc Kvansakul (M)

Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia. Electronic address: m.kvansakul@latrobe.edu.au.

Articles similaires

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Animals Lung India Sheep Transcriptome

Calcineurin inhibition enhances

Priyanka Das, Alejandro Aballay, Jogender Singh
1.00
Animals Caenorhabditis elegans Longevity Caenorhabditis elegans Proteins Calcineurin
1.00
Animals Mice Immunity, Innate Interneurons Synapses

Classifications MeSH