Homeostatic regulation of ribosomal proteins by ubiquitin-independent cotranslational degradation.
cotranslational protein degradation
proteasomal degradation
protein degradation
ribosomal proteins
ubiquitin-independent protein degradation
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
25 07 2023
25 07 2023
Historique:
pmc-release:
17
01
2024
medline:
19
7
2023
pubmed:
17
7
2023
entrez:
17
7
2023
Statut:
ppublish
Résumé
Ribosomes are the workplace for protein biosynthesis. Protein production required for normal cell function is tightly linked to ribosome abundance. It is well known that ribosomal genes are actively transcribed and ribosomal messenger RNAs (mRNAs) are rapidly translated, and yet ribosomal proteins have relatively long half-lives. These observations raise questions as to how homeostasis of ribosomal proteins is controlled. Here, we show that ribosomal proteins, while posttranslationally stable, are subject to high-level cotranslational protein degradation (CTPD) except for those synthesized as ubiquitin (Ub) fusion precursors. The N-terminal Ub moiety protects fused ribosomal proteins from CTPD. We further demonstrate that cotranslational folding efficiency and expression level are two critical factors determining CTPD of ribosomal proteins. Different from canonical posttranslational degradation, we found that CTPD of all the ribosomal proteins tested in this study does not require prior ubiquitylation. This work provides insights into the regulation of ribosomal protein homeostasis and furthers our understanding of the mechanism and biological significance of CTPD.
Identifiants
pubmed: 37459537
doi: 10.1073/pnas.2306152120
pmc: PMC10372694
doi:
Substances chimiques
Ribosomal Proteins
0
Saccharomyces cerevisiae Proteins
0
Ubiquitin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2306152120Références
Annu Rev Biochem. 2019 Jun 20;88:281-306
pubmed: 30566372
Mol Microbiol. 2009 Apr;72(1):69-84
pubmed: 19210616
Elife. 2019 Mar 07;8:
pubmed: 30843788
PLoS Biol. 2014 Jul 22;12(7):e1001910
pubmed: 25051069
Biochem Soc Trans. 2021 Aug 27;49(4):1589-1599
pubmed: 34240738
Cells. 2019 Aug 07;8(8):
pubmed: 31394841
Elife. 2016 Aug 23;5:
pubmed: 27552055
J Biol Chem. 2006 Apr 21;281(16):10657-62
pubmed: 16492666
PLoS Comput Biol. 2010 Jul 29;6(7):e1000865
pubmed: 20686685
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3056-61
pubmed: 11248031
Mol Syst Biol. 2011 Apr 12;7:481
pubmed: 21487400
Nature. 2014 Sep 25;513(7519):517-22
pubmed: 25209664
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13004-9
pubmed: 16916930
J Biol Chem. 2014 Jan 31;289(5):2701-10
pubmed: 24338021
J Mol Biol. 2017 Nov 10;429(22):3500-3524
pubmed: 28583440
Cell. 2012 Nov 21;151(5):1042-54
pubmed: 23178123
Cell. 2013 Jan 17;152(1-2):196-209
pubmed: 23332755
J Biol Chem. 2016 Apr 29;291(18):9827-34
pubmed: 26961882
Proc Natl Acad Sci U S A. 1989 Apr;86(8):2540-4
pubmed: 2539593
Nature. 1989 Mar 30;338(6214):394-401
pubmed: 2538753
Comput Biol Chem. 2022 Oct;100:107746
pubmed: 35961236
Nucleic Acids Res. 1994 Dec 25;22(25):5767-8
pubmed: 7838736
J Cell Biol. 2010 Apr 5;189(1):57-68
pubmed: 20368618
Science. 2017 Aug 4;357(6350):
pubmed: 28774900
Nat Rev Mol Cell Biol. 2001 Jul;2(7):514-20
pubmed: 11433365
Nature. 1993 Nov 25;366(6453):358-62
pubmed: 8247132
Curr Opin Biotechnol. 1996 Oct;7(5):541-6
pubmed: 8939629
Science. 2002 Mar 22;295(5563):2258-61
pubmed: 11910109
Nature. 2020 Jul;583(7815):303-309
pubmed: 32612236
Mol Biol Cell. 2016 Sep 1;27(17):2642-52
pubmed: 27385339
PLoS One. 2010 Apr 01;5(4):e9877
pubmed: 20376190
Mol Biol Cell. 2007 May;18(5):1953-63
pubmed: 17360968
Nature. 2000 Apr 13;404(6779):770-4
pubmed: 10783891
Oncogene. 2006 Oct 16;25(48):6384-91
pubmed: 17041624
Nat Rev Mol Cell Biol. 2019 Feb;20(2):116-131
pubmed: 30467428
Mol Cell Proteomics. 2002 May;1(5):376-86
pubmed: 12118079
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92
pubmed: 12502788
Plant Physiol. 1999 Feb;119(2):713-24
pubmed: 9952468
J Biol Chem. 1993 Mar 5;268(7):5115-20
pubmed: 8383129
Curr Biol. 2007 May 1;17(9):749-60
pubmed: 17446074
Nucleic Acids Res. 2016 Sep 19;44(16):7777-91
pubmed: 27422873
Trends Biochem Sci. 1999 Nov;24(11):437-40
pubmed: 10542411
Mol Cell Biol. 2008 Feb;28(4):1404-12
pubmed: 18070918
Nat Protoc. 2014 Apr;9(4):751-60
pubmed: 24603934
Mol Cell. 2022 Apr 21;82(8):1451-1466
pubmed: 35452614
Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):
pubmed: 30833452
J Biol Chem. 1989 May 5;264(13):7715-9
pubmed: 2540202
Cell Biol Int Rep. 1980 Dec;4(12):1081-90
pubmed: 7460022