Modelling Cell Orientation Under Stretch: The Effect of Substrate Elasticity.
Cell orientation
Cell–substrate interaction
Mechanosensing
Journal
Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404
Informations de publication
Date de publication:
17 07 2023
17 07 2023
Historique:
received:
29
12
2022
accepted:
19
06
2023
medline:
19
7
2023
pubmed:
18
7
2023
entrez:
17
7
2023
Statut:
epublish
Résumé
When cells are seeded on a cyclically deformed substrate like silicon, they tend to reorient their major axis in two ways: either perpendicular to the main stretching direction, or forming an oblique angle with it. However, when the substrate is very soft such as a collagen gel, the oblique orientation is no longer observed, and the cells align either along the stretching direction, or perpendicularly to it. To explain this switch, we propose a simplified model of the cell, consisting of two elastic elements representing the stress fiber/focal adhesion complexes in the main and transverse directions. These elements are connected by a torsional spring that mimics the effect of crosslinking molecules among the stress fibers, which resist shear forces. Our model, consistent with experimental observations, predicts that there is a switch in the asymptotic behaviour of the orientation of the cell determined by the stiffness of the substratum, related to a change from a supercritical bifurcation scenario, whereby the oblique configuration is stable for a sufficiently large stiffness, to a subcritical bifurcation scenario at a lower stiffness. Furthermore, we investigate the effect of cell elongation and find that the region of the parameter space leading to an oblique orientation decreases as the cell becomes more elongated. This implies that elongated cells, such as fibroblasts and smooth muscle cells, are more likely to maintain an oblique orientation with respect to the main stretching direction. Conversely, rounder cells, such as those of epithelial or endothelial origin, are more likely to switch to a perpendicular or parallel orientation on soft substrates.
Identifiants
pubmed: 37460873
doi: 10.1007/s11538-023-01180-1
pii: 10.1007/s11538-023-01180-1
pmc: PMC10352433
doi:
Substances chimiques
Collagen
9007-34-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
79Informations de copyright
© 2023. The Author(s).
Références
Boccafoschi F, Bosetti M, Gatti S, Cannas M (2007) Dynamic fibroblast cultures: response to mechanical stretching. Cell Adhes Migr 1(3):124–128
doi: 10.4161/cam.1.3.5144
Buck RC (1979) The longitudinal orientation of structures in the subendothelial space of rat aorta. Am J Anat 156:1–13
doi: 10.1002/aja.1001560102
Buck RC (1980) Reorientation response of cells to repeated stretch and recoil of the substrate. Exp Cell Res 127:470–474
doi: 10.1016/0014-4827(80)90456-5
Ciambella J, Lucci G, Nardinocchi P, Preziosi L (2022) Passive and active fibre reorientation in anisotropic materials. Int J Eng Sci 17:103688
doi: 10.1016/j.ijengsci.2022.103688
De R, Zemel A, Safran SA (2008) Do cells sense stress or strain? Measurement of cellular orientation can provide a clue. Biophys J 94:L29–L31
doi: 10.1529/biophysj.107.126060
Driessen NJ, Wilson W, Bouten CV, Baaijens FP (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226:53–64
doi: 10.1016/j.jtbi.2003.08.004
Faust U, Hamp N, Rubner W, Kirchgebner N, Safran S, Hoffmann B, Merkel R (2011) Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain. PLoS ONE 6:e28963
doi: 10.1371/journal.pone.0028963
Gasser CT, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35
doi: 10.1098/rsif.2005.0073
Giverso C, Lucci G, Preziosi L (2021) Cell reorientation under stretch: stability of a linear viscoelastic model. Math Biosci 337:108630. https://doi.org/10.1016/j.mbs.2021.108630
doi: 10.1016/j.mbs.2021.108630
Giverso C, Loy N, Lucci G, Preziosi L. Cell re-orientation under stretch: a review of experimental facts and mathematical modelling (submitted)
Hsu HJ, Lee CF, Kaunas R (2009) A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS ONE 4(3):e4853
doi: 10.1371/journal.pone.0004853
Jungbauer S, Gao H, Spatz JP, Kemkemer R (2008) Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys J 95:3470–3478
doi: 10.1529/biophysj.107.128611
Li Z, Lee H, Zhu C (2016) Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion Exp. Cell Res 349:85–94
doi: 10.1016/j.yexcr.2016.10.001
Liu B, Qu MJ, Qin KR, Li H, Li ZK, Shen BR, Jiang ZR (2008) Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys J 94:1497–1507
doi: 10.1529/biophysj.106.098574
Livne A, Bouchbinder E, Geiger B (2014) Cell reorientation under cyclic stretching. Nat Commun 5:3938
doi: 10.1038/ncomms4938
Loy N, Preziosi L. A statistical mechanics approach to describe cell re-orientation under stretch. J Phys A (in press)
Lu L, Oswald SJ, Ngu H, Yin FCP (2008) Mechanical properties of actin stress fibers in living cells. Biophys J 95:6060–6071
doi: 10.1529/biophysj.108.133462
Lucci G, Preziosi L (2021) A nonlinear elastic description of cell preferential orientations over a stretched substrate. Biomech Model Mechanobiol 20:631–649
doi: 10.1007/s10237-020-01406-4
Mao T, He Y, Gu Y, Yang Y, Yu Y, Wang X, Ding J (2021) Critical frequency and critical stretching rate for reorientation of cells on a cyclically stretched polymer in a microfluidic chip. ACS Appl Mater Interfaces 13:13934–13948
doi: 10.1021/acsami.0c21186
Morioka M, Parameswaran H, Naruse K, Kondo M, Sokabe M, Hasegawa Y, Suki B, Ito S (2011) Microtubule dynamics regulate cyclic stretch-induced cell alignment in human airway smooth muscle cells. PLoS ONE 6:e26384
doi: 10.1371/journal.pone.0026384
Osborne-Pellegrin MJ (1978) Some ultrastructural characteristics of the renal artery and abdominal aorta in the rat. J Anat 125:641–652
Safran SA, De R (2009) Nonlinear dynamics of cell orientation. Phys Rev E 80:060901
doi: 10.1103/PhysRevE.80.060901
Terracio L, Miller B, Borg TK (1988) Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell Dev Biol 24:53–58
doi: 10.1007/BF02623815
Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123–1130
doi: 10.1161/CIRCRESAHA.108.192930
Wang JHC (2000) Substrate deformation determines actin cytoskeleton reorganization: a mathematical modeling and experimental study. J Theor Biol 202:33–41
doi: 10.1006/jtbi.1999.1035
Wang H, Ip W, Bossy R, Grood ES (1995) Cell orientation response to cyclically deformed substrates: experimental validation of a cell model. J Biomech 28:1543–1552
doi: 10.1016/0021-9290(95)00101-8
White GE, Gimbrone MJ, Fujiwara K (1983) Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J Cell Biol 97:416–424
doi: 10.1083/jcb.97.2.416
Xu G, Li B, Feng X, Gao H (2016) A tensegrity model of cell reorientation on cyclically stretched substrates. Biophys J 111:1478–1486
doi: 10.1016/j.bpj.2016.08.036
Xu GK, Feng XQ, Gao H (2018) Orientations of cells on compliant substrates under biaxial stretches: a theoretical study. Biophys J 114(3):701–710
doi: 10.1016/j.bpj.2017.12.002
Zhao S, Suciu A, Ziegler T, Moore JE Jr, Bürki E, Meister JJ, Brunner HR (1995) Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler Thromb Vasc Biol 15(10):1781–1786
doi: 10.1161/01.ATV.15.10.1781