RAGE/SNAIL1 signaling drives epithelial-mesenchymal plasticity in metastatic triple-negative breast cancer.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
08 2023
Historique:
received: 15 02 2023
accepted: 07 07 2023
revised: 29 06 2023
medline: 28 8 2023
pubmed: 20 7 2023
entrez: 19 7 2023
Statut: ppublish

Résumé

Epithelial/Mesenchymal (E/M) plasticity plays a fundamental role both in embryogenesis and during tumorigenesis. The receptor for advanced glycation end products (RAGE) is a driver of cell plasticity in fibrotic diseases; however, its role and molecular mechanism in triple-negative breast cancer (TNBC) remains unclear. Here, we demonstrate that RAGE signaling maintains the mesenchymal phenotype of aggressive TNBC cells by enforcing the expression of SNAIL1. Besides, we uncover a crosstalk mechanism between the TGF-β and RAGE pathways that is required for the acquisition of mesenchymal traits in TNBC cells. Consistently, RAGE inhibition elicits epithelial features that block migration and invasion capacities. Next, since RAGE is a sensor of the tumor microenvironment, we modeled acute acidosis in TNBC cells and showed it promotes enhanced production of RAGE ligands and the activation of RAGE-dependent invasive properties. Furthermore, acute acidosis increases SNAIL1 levels and tumor cell invasion in a RAGE-dependent manner. Finally, we demonstrate that in vivo inhibition of RAGE reduces metastasis incidence and expands survival, consistent with molecular effects that support the relevance of RAGE signaling in E/M plasticity. These results uncover new molecular insights on the regulation of E/M phenotypes in cancer metastasis and provide rationale for pharmacological intervention of this signaling axis.

Identifiants

pubmed: 37468678
doi: 10.1038/s41388-023-02778-4
pii: 10.1038/s41388-023-02778-4
doi:

Substances chimiques

Receptor for Advanced Glycation End Products 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2610-2628

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Foulkes W, Smith I, Reis-Filho J. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.
pubmed: 21067385 doi: 10.1056/NEJMra1001389
Cardoso F. Global Status Metastatic Breast Cancer Report (2005–2015). Glob status metastatic breast cancer rep. 2016. http://www.breastcancervision.com .
Waks AG, Winer EP, Winer M. Breast cancer treatment: a review. JAMA. 2019;321:288–300.
pubmed: 30667505 doi: 10.1001/jama.2018.19323
Núñez Abad M, Calabuig-Fariñas S, Lobo de Mena M, José Godes Sanz de Bremond M, García González C, Torres, et al. Update on systemic treatment in early triple negative breast cancer. Ther Adv Med Oncol. 2021;13:1–18. https://doi.org/10.1177/1758835920986749 .
doi: 10.1177/1758835920986749
Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382:810–21. https://www.nejm.org/doi/full/10.1056/NEJMoa1910549 .
pubmed: 32101663 doi: 10.1056/NEJMoa1910549
Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396:1817–28.
pubmed: 33278935 doi: 10.1016/S0140-6736(20)32531-9
Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J Clin Oncol. 2020;423–33. https://pubmed.ncbi.nlm.nih.gov/31841354/ .
Mendez O, Peg V, Salvans C, Pujals M, Fernandez Y, Abasolo I, et al. Extracellular HMGA1 promotes tumor invasion and metastasis in triple-negative breast cancer. Clin Cancer Res. 2018;24:6367–82.
pubmed: 30135148 doi: 10.1158/1078-0432.CCR-18-0517
Neeper M, Schmidt AM, Brett J, Shi Du Yan, Wang F, Pan YCE, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267:14998–5004. https://pubmed.ncbi.nlm.nih.gov/1378843/ .
pubmed: 1378843 doi: 10.1016/S0021-9258(18)42138-2
Kumar Pasupulati A, Chitra PS, Reddy GB. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts. 2016;7:293–9. https://pubmed.ncbi.nlm.nih.gov/27816946/ .
pubmed: 27816946 doi: 10.1515/bmc-2016-0021
Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the receptor for advanced glycation endproducts (RAGE): a medicinal chemistry perspective. J Med Chem. 2017;60:7213–32.
pubmed: 28482155 pmcid: 5601361 doi: 10.1021/acs.jmedchem.7b00058
Narumi K, Miyakawa R, Ueda R, Hashimoto H, Yamamoto Y, Yoshida T, et al. Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J Immunol. 2015;194:5539–48. https://pubmed.ncbi.nlm.nih.gov/25911757/ .
pubmed: 25911757 doi: 10.4049/jimmunol.1402301
Hori O, Brett J, Slattery T, Cao R, Zhang J, Jing XC, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of RAGE and amphoterin in the developing nervous system. J Biol Chem. 1995;270:25752–61. https://doi.org/10.1074/jbc.270.43.25752 .
doi: 10.1074/jbc.270.43.25752 pubmed: 7592757
Ko S-Y, Ko H-A, Shieh T-M, Chang W-C, Chen H-I, Chang S-S, et al. Cell migration is regulated by AGE-RAGE interaction in human oral cancer cells in vitro. PLoS One. 2014;9:e110542 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4199749&tool=pmcentrez&rendertype=abstract .
pubmed: 25330185 pmcid: 4199749 doi: 10.1371/journal.pone.0110542
Deane R, Yan SD, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9:907–13.
pubmed: 12808450 doi: 10.1038/nm890
Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 2013;25:2185–97. https://pubmed.ncbi.nlm.nih.gov/23838007/ .
pubmed: 23838007 doi: 10.1016/j.cellsig.2013.06.013
Yan SF, Ramasamy R, Schmidt AM. The RAGE axis a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res. 2010;106:842–53.
pubmed: 20299674 pmcid: 2862596 doi: 10.1161/CIRCRESAHA.109.212217
Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, et al. Role of RAGE in Alzheimer’s disease. Cell Mol Neurobiol. 2016;36:483–95.
pubmed: 26175217 doi: 10.1007/s10571-015-0233-3
Ge X, Arriazu E, Magdaleno F, Antoine DJ, dela Cruz R, Theise N, et al. High mobility group box-1 drives fibrosis progression signaling via the receptor for advanced glycation end products in mice. Hepatology. 2018;68:2380–404. https://pubmed.ncbi.nlm.nih.gov/29774570/ .
pubmed: 29774570 doi: 10.1002/hep.30093
Xia JR, Liu NF, Zhu NX. Specific siRNA targeting the receptor for advanced glycation end products inhibits experimental hepatic fibrosis in rats. Int J Mol Sci. 2008;9:638–61. https://pubmed.ncbi.nlm.nih.gov/19325776/ .
pubmed: 19325776 pmcid: 2635697 doi: 10.3390/ijms9040638
Riehl A, Németh J, Angel P, Hess J. The receptor RAGE: bridging inflammation and cancer. Cell Commun Signal. 2009;7:1–7. https://pubmed.ncbi.nlm.nih.gov/19426472/ .
doi: 10.1186/1478-811X-7-12
Nankali M, Karimi J, Goodarzi MT, Saidijam M, Khodadadi I, Razavi ANE, et al. Increased expression of the receptor for advanced glycation end-products (RAGE) is associated with advanced breast cancer stage. Oncol Res Treat. 2016;39:622–8.
pubmed: 27710974 doi: 10.1159/000449326
Tesařová P, Kalousová M, Jáchymová M, Mestek O, Petruzelka L, Zima T. Receptor for advanced glycation end products (RAGE) - Soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest. 2007;25:720–5.
pubmed: 18058469 doi: 10.1080/07357900701560521
Jing R, Cui M, Wang J, Wang H. Receptor for advanced glycation end products (RAGE) soluble form (sRAGE): a new biomarker for lung cancer. Neoplasma. 2010;57:55–61. https://pubmed.ncbi.nlm.nih.gov/19895173/ .
pubmed: 19895173 doi: 10.4149/neo_2010_01_055
Li T, Qin W, Liu Y, Li S, Qin X, Liu Z. Effect of RAGE gene polymorphisms and circulating sRAGE levels on susceptibility to gastric cancer: a case-control study. Cancer Cell Int. 2017;17:1–10. https://cancerci.biomedcentral.com/articles/10.1186/s12935-017-0391-0 .
doi: 10.1186/s12935-017-0391-0
Chen MC, Chen KC, Chang GC, Lin H, Wu CC, Kao WH, et al. RAGE acts as an oncogenic role and promotes the metastasis of human lung cancer. Cell Death Dis. 2020;11:1–13. https://doi.org/10.1038/s41419-020-2432-1 .
doi: 10.1038/s41419-020-2432-1
Kwak T, Drews-Elger K, Ergonul A, Miller PC, Braley A, Hwang GH, et al. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis. Oncogene. 2017;36:1559–72. https://doi.org/10.1038/onc.2016.324 .
doi: 10.1038/onc.2016.324 pubmed: 27669433
Tian T, Li X, Hua Z, Ma J, Wu X, Liu Z, et al. S100A7 promotes the migration, invasion and metastasis of human cervical cancer cells through epithelial-mesenchymal transition. Oncotarget. 2017;8:24964–77. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5421902 .
Palanissami G, Paul SFD. RAGE and its ligands: molecular interplay between glycation, inflammation, and hallmarks of cancer—a review. Horm Cancer. 2018;9:295–325. https://doi.org/10.1007/s12672-018-0342-9 .
doi: 10.1007/s12672-018-0342-9 pubmed: 29987748 pmcid: 10355895
Weed SA, Parsons JT. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene. 2001;20:6418–34. https://pubmed.ncbi.nlm.nih.gov/11607842/ .
pubmed: 11607842 doi: 10.1038/sj.onc.1204783
Bryce NS, Clark ES, Leysath JL, Currie JD, Webb DJ, Weaver AM. Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol. 2005;15:1276–85. https://pubmed.ncbi.nlm.nih.gov/16051170/ .
pubmed: 16051170 doi: 10.1016/j.cub.2005.06.043
Weed SA, Du Y, Thomas Parsons J. Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J Cell Sci. 1998;111:2433–43. https://pubmed.ncbi.nlm.nih.gov/9683637/ .
pubmed: 9683637 doi: 10.1242/jcs.111.16.2433
Wang W, Liu Y, Liao K. Tyrosine phosphorylation of cortactin by the FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biol. 2011;12. https://pubmed.ncbi.nlm.nih.gov/22078467/ .
Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 2012;122:1377–92.
pubmed: 22406537 pmcid: 3314449 doi: 10.1172/JCI58642
Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D. PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25:206–12. https://pubmed.ncbi.nlm.nih.gov/21192237/ .
pubmed: 21192237 pmcid: 3346183 doi: 10.1097/WAD.0b013e318204b550
Chen CR, Kang Y, Massagué J. Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA. 2001;98:992–9. https://pubmed.ncbi.nlm.nih.gov/11158583/ .
pubmed: 11158583 pmcid: 14697 doi: 10.1073/pnas.98.3.992
Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18:1131–43. https://pubmed.ncbi.nlm.nih.gov/15155580/ .
pubmed: 15155580 pmcid: 415638 doi: 10.1101/gad.294104
Mejlvang J, Kriajevska M, Vandewalle C, Chernova T, Sayan AE, Berx G, et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol Biol Cell. 2007;18:4615–24. https://pubmed.ncbi.nlm.nih.gov/17855508/ .
pubmed: 17855508 pmcid: 2043563 doi: 10.1091/mbc.e07-05-0406
Cheng M, Liu H, Zhang D, Liu Y, Wang C, Liu F, et al. HMGB1 enhances the AGE-induced expression of CTGF and TGF-β via RAGE-dependent signaling in renal tubular epithelial cells. Am J Nephrol. 2015;41:257–66.
pubmed: 25924590 doi: 10.1159/000381464
Serban AI, Stanca L, Geicu OI, Munteanu MC, Dinischiotu A. RAGE and TGF-β1 cross-talk regulate extracellular matrix turnover and cytokine synthesis in AGEs exposed fibroblast cells. PLoS One. 2016;11:e0152376.
Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ. The Receptor for Advanced Glycation End-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Signal. 2011;15:2175–84. https://pubmed.ncbi.nlm.nih.gov/21126167/ .
pubmed: 21126167 pmcid: 3166176 doi: 10.1089/ars.2010.3378
Ray R, Jangde N, Singh SK, Sinha S, Rai V. Lysophosphatidic acid-RAGE axis promotes lung and mammary oncogenesis via protein kinase B and regulating tumor microenvironment. Cell Commun Signal. 2020;18. https://pubmed.ncbi.nlm.nih.gov/33109194/ .
Ma H, Li SY, Xu P, Babcock SA, Dolence EK, Brownlee M, et al. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med. 2009;13:1751–64. https://pubmed.ncbi.nlm.nih.gov/19602045/ .
pubmed: 19602045 doi: 10.1111/j.1582-4934.2008.00547.x
Bai W, Zhou J, Zhou N, Liu Q, Cui J, Zou W, et al. Hypoxia-increased RAGE expression regulates chemotaxis and pro-inflammatory cytokines release through nuclear translocation of NF-κ B and HIF1α in THP-1 cells. Biochem Biophys Res Commun. 2018;495:2282–8. https://pubmed.ncbi.nlm.nih.gov/29258824/ .
pubmed: 29258824 doi: 10.1016/j.bbrc.2017.12.084
Rohani N, Hao L, Alexis MS, Joughin BA, Krismer K, Moufarrej MN, et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res. 2019;79:1952–66.
pubmed: 30755444 pmcid: 6467770 doi: 10.1158/0008-5472.CAN-18-1604
Yatime L, Andersen GR. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. FEBS J. 2013;280:6556–68.
pubmed: 24119142 doi: 10.1111/febs.12556
Jangde N, Ray R, Rai V. RAGE and its ligands: from pathogenesis to therapeutics. Crit Rev Biochem Mol Biol. 2020;55:555–75. https://doi.org/10.1080/10409238.2020.1819194 .
doi: 10.1080/10409238.2020.1819194 pubmed: 32933340
Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease. Annu Rev Med. 2018;69:24.1–24.16. https://pubmed.ncbi.nlm.nih.gov/29106804/ .
Wang L, Wang HL, Liu TT, Lan HY. TGF-beta as a master regulator of diabetic nephropathy. Int J Mol Sci. 2021;22:1–18. https://doi.org/10.3390/ijms22157881 .
doi: 10.3390/ijms22157881
Raghavan CT, Nagaraj RH. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells. Glycoconj J. 2016;33:631–43. https://doi.org/10.1007/s10719-016-9686-y .
doi: 10.1007/s10719-016-9686-y pubmed: 27263094 pmcid: 4975983
Nam MH, Pantcheva MB, Rankenberg J, Nagaraj RH. Transforming growth factor-β2-mediated mesenchymal transition in lens epithelial cells is repressed in the absence of RAGE. Biochem J. 2021;478:2285–96.
pubmed: 34143864 doi: 10.1042/BCJ20210069
Chen YC, Statt S, Wu R, Chang HT, Liao JW, Wang CN, et al. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep. 2016;6:18815.
pubmed: 26739898 pmcid: 4703978 doi: 10.1038/srep18815
He M, Kubo H, Ishizawa K, Hegab AE, Yamamoto Y, Yamamoto H, et al. The role of the receptor for advanced glycation end-products in lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2007;293:1427–36.
doi: 10.1152/ajplung.00075.2007
Yin C, Li H, Zhang B, Liu Y, Lu G, Lu S, et al. RAGE-binding S100A8/A9 promotes the migration and invasion of human breast cancer cells through actin polymerization and epithelial-mesenchymal transition. Breast Cancer Res Treat. 2013;142:297–309.
pubmed: 24177755 doi: 10.1007/s10549-013-2737-1
Zhang J, Shao S, Han D, Xu Y, Jiao D, Wu J, et al. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-KB signaling pathway. Int J Oncol. 2018;53:659–71.
pubmed: 29845254 pmcid: 6017266
Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-β: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol. 2003;23:532–43.
pubmed: 14631561 doi: 10.1053/S0270-9295(03)00132-3
Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83.
pubmed: 30017632 doi: 10.1016/j.cbi.2018.07.008
Li JH, Huang XR, Zhu HJ, Oldfield M, Cooper M, Truong LD, et al. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J. 2004;18:176–8. https://pubmed.ncbi.nlm.nih.gov/12709399/ .
pubmed: 12709399 doi: 10.1096/fj.02-1117fje
Chung ACK, Zhang H, Kong YZ, Tan JJ, Huang XR, Kopp JB, et al. Advanced glycation end-products induce tubular CTGF via TGF-β-independent Smad3 signaling. J Am Soc Nephrol. 2010;21:249–60.
pubmed: 19959709 pmcid: 2834552 doi: 10.1681/ASN.2009010018
Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-b1 – induced EMT in vitro. Neoplasia. 2004;6:603–10.
pubmed: 15548370 pmcid: 1531665 doi: 10.1593/neo.04241
Li Y, Wang P, Zhao J, Li H, Liu D, Zhu W. HMGB1 attenuates TGF-β-induced epithelial–mesenchymal transition of FaDu hypopharyngeal carcinoma cells through regulation of RAGE expression. Mol Cell Biochem. 2017;431:1–10.
pubmed: 28285361 doi: 10.1007/s11010-017-2968-2
Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5. https://doi.org/10.1038/s41392-020-00280-x .
Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer. 2017;17:577–93.
pubmed: 28912578 doi: 10.1038/nrc.2017.77
Sadeghi M, Ordway B, Rafiei I, Borad P, Fang B, Koomen JL, et al. Integrative analysis of breast cancer cells reveals an epithelial-mesenchymal transition role in adaptation to acidic microenvironment. Front Oncol. 2020;10:1–14.
doi: 10.3389/fonc.2020.00304
Riemann A, Schneider B, Ihling A, Nowak M, Sauvant C, Thews O, et al. Acidic environment leads to ROS-Induced MAPK signaling in cancer cells. PLoS One. 2011;6:e22445.
pubmed: 21818325 pmcid: 3144229 doi: 10.1371/journal.pone.0022445
Chen B, Liu J, Ho TT, Ding X, Mo YY. Erk-mediated nf-κb activation through asic1 in response to acidosis. Oncogenesis. 2016;5:1–8.
doi: 10.1038/oncsis.2016.81
Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M, et al. Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int J Cancer. 2008;123:2532–42. https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.23818 .
pubmed: 18729196 doi: 10.1002/ijc.23818
Gupta SC, Singh R, Pochampally R, Watabe K, Mo Y-Y. Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-kB pathway. Oncotarget. 2014;5:12070–82. http://www.oncotarget.com/fulltext/2514 .
Suzuki A, Maeda T, Baba Y, Shimamura K, Kato Y. Acidic extracellular ph promotes epithelial mesenchymal transition in lewis lung carcinoma model. Cancer Cell Int. 2014;14:1–11.
doi: 10.1186/s12935-014-0129-1
Peppicelli S, Bianchini F, Torre E, Calorini L. Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin Exp Metastasis. 2014;31:423–33. https://pubmed.ncbi.nlm.nih.gov/24469963/ .
pubmed: 24469963 doi: 10.1007/s10585-014-9637-6
Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem. 2008;283:27255–69. https://pubmed.ncbi.nlm.nih.gov/18667420/ .
pubmed: 18667420 doi: 10.1074/jbc.M801622200
Zong H, Madden A, Ward M, Mooney M, Elliott C, Stitt A. Homodimerization is essential for the receptor for advanced glycation end products (RAGE)-mediated signal transduction. J Biol Chem. 2010;285:23137–46. https://pubmed.ncbi.nlm.nih.gov/20504772/ .
pubmed: 20504772 pmcid: 2906307 doi: 10.1074/jbc.M110.133827
Gebhardt C, Riehl A, Durchdewald M, Németh J, Fürstenberger G, Müller-Decker K, et al. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med. 2008;205:275–85.
pubmed: 18208974 pmcid: 2271015 doi: 10.1084/jem.20070679
Kang R, Tang D, Lotze MT, Zeh HJ. AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy. 2012;8:989–91.
pubmed: 22722139 pmcid: 3427269 doi: 10.4161/auto.20258
Burstein AH, Grimes I, Galasko DR, Aisen PS, Sabbagh M, Mjalli AMM. Effect of TTP488 in patients with mild to moderate Alzheimer’s disease. BMC Neurol. 2014;14:1–8. https://pubmed.ncbi.nlm.nih.gov/24423155/ .
doi: 10.1186/1471-2377-14-12
Galasko D, Bell J, Mancuso JY, Kupiec JW, Sabbagh MN, Van Dyck C, et al. Clinical trial of an inhibitor of RAGE-Ab interactions in Alzheimer disease. Neurology. 2014;82:1536–42.
pubmed: 24696507 pmcid: 4011464 doi: 10.1212/WNL.0000000000000364
ClinicalTrials.gov. Evaluation of the efficacy and safety of azeliragon (TTP488) in patients with mild Alzheimer’s disease (STEADFAST). Identifier (NCT number): NCT02080364. 2014.
Gregori J, Villarreal L, Méndez O, Sánchez A, Baselga J, Villanueva J. Batch effects correction improves the sensitivity of significance tests in spectral counting-based comparative discovery proteomics. J Proteom. 2012;75:3938–51. https://www.sciencedirect.com/science/article/pii/S1874391912002758 .
doi: 10.1016/j.jprot.2012.05.005
Bellio C, Emperador M, Castellano P, Gris-Oliver A, Canals F, Sánchez-Pla A, et al. GDF15 is an eribulin response biomarker also required for survival of DTP breast cancer cells. Cancers. 2022;14:1–23.
doi: 10.3390/cancers14102562
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. 2010. http://genomebiology.com/2010/11/3/R25 .
Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. http://bioconductor.org .
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://academic.oup.com/nar/article/43/7/e47/2414268 .
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995;57:289–300.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50. https://pubmed.ncbi.nlm.nih.gov/16199517/ .
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16:284–7.
doi: 10.1089/omi.2011.0118
Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7. https://pubmed.ncbi.nlm.nih.gov/1172191/ .
pubmed: 1172191 doi: 10.1038/256495a0

Auteurs

Mireia Pujals (M)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Carla Mayans (C)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
Universitat de Barcelona, Barcelona, Spain.

Chiara Bellio (C)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Olga Méndez (O)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Emanuela Greco (E)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Roberta Fasani (R)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Mercè Alemany-Chavarria (M)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Esther Zamora (E)

Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Laura Padilla (L)

LEITAT Technological Center, 08028, Barcelona, Spain.

Francesc Mitjans (F)

LEITAT Technological Center, 08028, Barcelona, Spain.

Paolo Nuciforo (P)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Francesc Canals (F)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Lara Nonell (L)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

María Abad (M)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
Altos Labs Cambridge Institute of Science, Cambridge, UK.

Cristina Saura (C)

Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Josep Tabernero (J)

Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
IOB Institute of Oncology, Quiron Group (Quiron-IOB), Barcelona, Spain.
University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.

Josep Villanueva (J)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. jvillanueva@vhio.net.
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain. jvillanueva@vhio.net.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH