A comparison between petrous bone and tooth, femur and tibia DNA analysis from degraded skeletal remains.
degraded DNA
forensic genetics
human remains
petrous bone
skeletal remains
Journal
Electrophoresis
ISSN: 1522-2683
Titre abrégé: Electrophoresis
Pays: Germany
ID NLM: 8204476
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
revised:
07
06
2023
received:
08
05
2023
accepted:
07
07
2023
medline:
23
10
2023
pubmed:
20
7
2023
entrez:
20
7
2023
Statut:
ppublish
Résumé
Skeletal remains are the only biological material that remains after long periods; however, environmental conditions such as temperature, humidity, and pH affect DNA preservation, turning skeletal remains into a challenging sample for DNA laboratories. Sample selection is a key factor, and femur and tooth have been traditionally recommended as the best substrate of genetic material. Recently, petrous bone (cochlear area) has been suggested as a better option due to its DNA yield. This research aims to evaluate the efficiency of petrous bone compared to other cranium samples (tooth) and postcranial long bones (femur and tibia). A total amount of 88 samples were selected from 38 different individuals. The samples were extracted by using an organic extraction protocol, DNA quantification by Quantifiler Trio kit and amplified with GlobalFiler kit. Results show that petrous bone outperforms other bone remains in quantification data, yielding 15-30 times more DNA than the others. DNA profile data presented likeness between petrous bone and tooth regarding detected alleles; however, the amount of DNA extracted in petrous bones allowed us to obtain more informative DNA profiles with superior quality. In conclusion, petrous bone or teeth sampling is recommended if DNA typing is going to be performed with environmentally degraded skeletal remains.
Identifiants
pubmed: 37469183
doi: 10.1002/elps.202300097
doi:
Substances chimiques
DNA
9007-49-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1559-1568Informations de copyright
© 2023 The Authors. Electrophoresis published by Wiley-VCH GmbH.
Références
Latham KE, Miller JJ. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci Res. 2019;4:51-9.
Al-Kandari NM, Singh J, Sangar VC. Time-dependent effects of temperature and humidity on quantity of DNA in samples of human saliva, blood and semen in Kuwait. Int J Pharm Sci Res. 2016;14:2852-73.
Burger J, Hummel S, Herrmann B, Henke W. DNA preservation: a microsatellite-DNA study on ancient skeletal remains. Electrophoresis. 1999;20:1722-8.
Creighton TE. The biophysical chemistry of nucleic acids and proteins. Eastbourne, UK: Helvetian Press; 2010.
Dabney J, Meyer M, Pääbo S. Ancient DNA damage. Cold Spring Harb Perspect Biol. 2013;5:a012567.
Hofreiter M, Sneberger J, Pospisek M, Vanek D. Progress in forensic bone DNA analysis: lessons learned from ancient DNA. Forensic Sci Int Genet. 2021;54:102538.
Miloš A, Selmanović A, Smajlović L, Huel RLM, Cheryl Katzmarzyk AR, Parsons TJ. Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat Med J. 2007;48:486-93.
Finaughty C, Heathfield LJ, Kemp V, Márquez-Grant N. Forensic DNA extraction methods for human hard tissue: a systematic literature review and meta-analysis of technologies and sample type. Forensic Sci Int Genet. 2023;63:102818.
Edson SM, Christensen AF, Barritt SM, Meehan A, Leney MD, Finelli LN. Sampling of the cranium for mitochondrial DNA analysis of human skeletal remains. Forensic Sci Int Genet Suppl Ser. 2009;2:269-70.
Pilli E, Vai S, Caruso MG, D'Errico G, Berti A, Caramelli D. Neither femur nor tooth: petrous bone for identifying archeological bone samples via forensic approach. Forensic Sci Int. 2018;283:144-9.
Gaudio D, Fernandes DM, Schmidt R, Cheronet O, Mazzarelli D, Mattia M, et al. Genome-wide DNA from degraded petrous bones and the assessment of sex and probable geographic origins of forensic cases. Sci Rep. 2019;9:8226.
Gonzalez A, Cannet C, Zvénigorosky V, Geraut A, Koch G, Delabarde T, et al. The petrous bone: ideal substrate in legal medicine? Forensic Sci Int Genet. 2020;47:102305.
Ibrahim J, Brumfeld V, Addadi Y, Rubin S, Weiner S, Boaretto E, et al. The petrous bone contains high concentrations of osteocytes: one possible reason why ancient DNA is better preserved in this bone. BioRxiv. 2022. https://doi.org/10.1101/2022.05.20.492830
Scott S, Jantz RL. Survivability versus rate of recovery for skeletal elements in forensic anthropology. J Forensic Sci. 2022;67:1758-65.
Cooper A, Poinar H. Ancient DNA: Do it right or not at all. Science. 2000;289:1139.
Green RE, Briggs AW, Krause J, Prüfer K, Burbano HA, Siebauer M, et al. The neandertal genome and ancient DNA authenticity. EMBO J. 2009;28:2494-502. https://doi.org/10.1038/emboj.2009.222
Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, et al. Genetic analyses from ancient DNA. Annu Rev Genet. 2004;38:645-79.
Haynes S, Searle JB, Bretman A, Dobney KM. Bone preservation and ancient DNA: the application of screening methods for predicting DNA survival. J Archaeol Sci. 2002;29:585-92.
Consejería de Sostenibilidad, Medio Ambiente y Economía Azul de la Junta de Andalucía. Caracterización media de las principales variables climáticas en Andalucía 2022. https://www.juntadeandalucia.es/medioambiente/portal/areas-tematicas/cambio-climatico-y-clima/clima-en-andalucia/caracterizacion_media_principales_variables_climaticas_andalucia
Consejería de Medio Ambiente de la Junta de Andalucía. Los criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestra y análisis para su investigación. 1999. https://www.ugr.es/~fjmartin/INFORMES/Criterios%20y%20estandares.pdf
Marjanović D, Durmić-Pašić A, Bakal N, Haverić S, Kalamujić B, Kovačević L, et al. DNA identification of skeletal remains from World War II mass graves uncovered in Slovenia. Croat Med J. 2007;48:513-9.
Carlyle SW, Parr RL, Hayes MG, O'Rourke DH. Context of maternal lineages in the greater Southwest. Am J Phys Anthropol. 2000;113:85-101.
Hochmeister MN, Budowle B, B UrsV, Eggmann U, Comey CT, Dirnhofer R. Typing of deoxyribonucleic acid (DNA) extracted from compact bone from human remains. J Forensic Sci. 1991;36:1649-61.
Haarkötter C, Gálvez X, Vinueza-Espinosa DC, Medina-Lozano MI, Saiz M, Lorente JA, et al. A comparison of five DNA extraction methods from degraded human skeletal remains. Forensic Sci Int. 2023;348:111730.
Thermo Fisher Scientific. Quantifiler HP and trio DNA quantification kits. User guide. 2014.
ThermoFisher Scientific. GlobalFiler™ and GlobalFiler™ IQC PCR amplification kits. User guide. 2019.
The jamovi project. jamovi (Version 2.2.5). 2021. Retrieved from https://jamovi.org
Hansen HB, Damgaard PB, Margaryan A, Stenderup J, Lynnerup N, Willerslev E, et al. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS One. 2017;12:e0170940.
Šuligoj A, Mesesnel S, Leskovar T, Podovšovnik E, Zupanič Pajnič I. Comparison of DNA preservation between adult and non-adult ancient skeletons. Int J Legal Med. 2022;136(6):1521-39.
Allen RW, Pritchard J, Fu J. An analysis of data curated from 5 years of identifying human remains. J Forensic Sci. 2023;68:614-20.
Baeta M, Núñez C, Cardoso S, Palencia-Madrid L, Herrasti L, Etxeberria F, et al. Digging up the recent Spanish memory: genetic identification of human remains from mass graves of the Spanish Civil War and posterior dictatorship. Forensic Sci Int Genet. 2015;19:272-9.
Emery MV, Bolhofner K, Winingear S, Oldt R, Montes M, Kanthaswamy S, et al. Reconstructing full and partial STR profiles from severely burned human remains using comparative ancient and forensic DNA extraction techniques. Forensic Sci Int Genet. 2020;46:102272.
Parker C, Rohrlach AB, Friederich S, Nagel S, Meyer M, Krause J, et al. A systematic investigation of human DNA preservation in medieval skeletons. Sci Rep. 2020;10:18225.
Obal M, Zupanič Pajnič I, Gornjak Pogorelc B, Zupanc T. Different skeletal elements as a source of DNA for genetic identification of Second World War victims. Forensic Sci Int Genet Suppl Ser. 2019;7:27-9.
Kulstein G, Hadrys T, Wiegand P. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int J Legal Med. 2018;132:13-24.
Vinueza-Espinosa DC, Santos C, Martínez-Labarga C, Malgosa A. Human DNA extraction from highly degraded skeletal remains: how to find a suitable method? Electrophoresis. 2020;41:2149-58.
Senst A, Caliebe A, Drum M, Cossu C, Zieger M, Scheurer E, et al. Recommendations for the successful identification of altered human remains using standard and emerging technologies: results of a systematic approach. Forensic Sci Int Genet. 2023;62:102790.
Zupanič Pajnič I, Inkret J, Zupanc T, Podovšovnik E. Comparison of nuclear DNA yield and STR typing success in Second World War petrous bones and metacarpals III. Forensic Sci Int Genet. 2021;55:102578.
Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S, Alpaslan-Roodenberg S, et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One. 2015;10:e0129102.
Alberti F, Gonzalez J, Paijmans JLA, Basler N, Preick M, Henneberger K, et al. Optimized DNA sampling of ancient bones using computed tomography scans. Mol Ecol Resour. 2018;18:1196-208. https://doi.org/10.1111/1755-0998.12911
Poetsch M, Konrad H, Helmus J, Bajanowski T, von Wurmb-Schwark N. Does zero really mean nothing?-first experiences with the new PowerQuantTM system in comparison to established real-time quantification kits. Int J Legal Med. 2016;130:935-40.
Obal M, Zupanc T, Zupanič Pajnič I. Comparison of quantitative PCR results for mitochondrial DNA in relation to nuclear DNA isolated from Second World War mass grave skeletal remains. SSRN. 2023. https://doi.org/10.2139/ssrn.4349048
Johnston E, Stephenson M. DNA profiling success rates from degraded skeletal remains in Guatemala. J Forensic Sci. 2016;61:898-902.
Hines DZC, Vennemeyer M, Amory S, Huel RLM, Hanson I, Katzmarzyk C, et al. Prioritized sampling of bone and teeth for DNA analysis in commingled cases. Commingled human remains. Amsterdam: Elsevier; 2014. p. 275-305.
G ŽM, ZP I, Črešnar M, Zupanc T. Determination of DNA yield rates in six different skeletal elements in ancient bones. Forensic Sci Int Genet Suppl Ser. 2019;7:120-2.
Ambers, A. Forensic genetic approaches for identification of human skeletal remains. Challenges, best practices, and emerging technologies. (Ed: Ambers Angie), Elsevier, San Diego: 2023. p. 81-117.
Zupanc T, Podovšovnik E, Obal M, Zupanič Pajnič I. High DNA yield from metatarsal and metacarpal bones from Slovenian Second World War skeletal remains. Forensic Sci Int Genet. 2021;51:102426.
Gettings KB, Kiesler KM, Vallone PM. Performance of a next generation sequencing SNP assay on degraded DNA. Forensic Sci Int Genet. 2015;19:1-9.
Charlton S, Booth T, Barnes I. The problem with petrous? A consideration of the potential biases in the utilization of pars petrosa for ancient DNA analysis. World Archeol. 2019;51:574-85.