Multi-omics quantitative data of tomato fruit unveils regulation modes of least variable metabolites.
Fruit
LC-MS
Metabolism regulation
Omics
Proton NMR
Solanum lycopersicum
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
22 Jul 2023
22 Jul 2023
Historique:
received:
18
04
2023
accepted:
11
07
2023
medline:
23
10
2023
pubmed:
22
7
2023
entrez:
21
7
2023
Statut:
epublish
Résumé
The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied. We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways. The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.
Sections du résumé
BACKGROUND
BACKGROUND
The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied.
RESULTS
RESULTS
We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways.
CONCLUSIONS
CONCLUSIONS
The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.
Identifiants
pubmed: 37479985
doi: 10.1186/s12870-023-04370-0
pii: 10.1186/s12870-023-04370-0
pmc: PMC10362748
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
365Subventions
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Organisme : Agence Nationale de la Recherche
ID : ANR-11-INBS-0010
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Organisme : Agence Nationale de la Recherche
ID : ANR-11-INBS-0010
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Organisme : Agence Nationale de la Recherche
ID : ANR-11-INBS-0010
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Organisme : Agence Nationale de la Recherche
ID : ANR-15-CE20-0009
Informations de copyright
© 2023. The Author(s).
Références
Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617
pubmed: 29140435
Nat Metab. 2020 Sep;2(9):893-901
pubmed: 32719541
Plant Physiol. 2011 Sep;157(1):405-25
pubmed: 21795583
BMC Bioinformatics. 2006 Dec 18;7:535
pubmed: 17176458
Plant Sci. 2021 Jan;302:110687
pubmed: 33288005
J Mass Spectrom. 2010 Jul;45(7):703-14
pubmed: 20623627
Annu Rev Genet. 2012;46:233-64
pubmed: 22934643
BMC Plant Biol. 2018 Nov 12;18(1):278
pubmed: 30419822
J Exp Bot. 2020 Oct 22;71(20):6238-6245
pubmed: 32761202
Plant Physiol. 2008 Oct;148(2):730-50
pubmed: 18715960
Database (Oxford). 2018 Jan 1;2018:
pubmed: 29762652
Hortic Res. 2019 Aug 11;6:98
pubmed: 31666959
Gene. 2018 Mar 1;645:1-6
pubmed: 29242074
Front Plant Sci. 2020 Feb 05;11:16
pubmed: 32117365
Mol Plant. 2019 Jun 3;12(6):879-892
pubmed: 30639314
Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
pubmed: 12184808
Trends Plant Sci. 2020 Jan;25(1):66-79
pubmed: 31679994
Front Plant Sci. 2017 Jul 10;8:1124
pubmed: 28740499
Nucleic Acids Res. 2008 Jan;36(Database issue):D402-8
pubmed: 17984079
J Biosci. 2018 Mar;43(1):173-187
pubmed: 29485125
J Exp Bot. 2016 Aug;67(15):4767-77
pubmed: 27382114
Plant Cell. 2011 Jan;23(1):162-84
pubmed: 21239646
Annu Rev Biochem. 2017 Jun 20;86:277-304
pubmed: 28654323
Bioinformatics. 2019 Sep 1;35(17):3055-3062
pubmed: 30657866
Plant Physiol. 2014 Mar;164(3):1204-21
pubmed: 24474652
J Exp Bot. 2013 Dec;64(18):5737-52
pubmed: 24151307
Plant Cell. 2014 Aug;26(8):3224-42
pubmed: 25139005
Proteomics. 2005 Feb;5(2):566-71
pubmed: 15627964
Front Plant Sci. 2020 Sep 04;11:577980
pubmed: 33014001
Cell. 2018 Jan 11;172(1-2):249-261.e12
pubmed: 29328914
Plant J. 2009 Sep;59(5):826-39
pubmed: 19453453
Data Brief. 2019 Dec 17;28:105015
pubmed: 31909114
Annu Rev Anal Chem (Palo Alto Calif). 2018 Jun 12;11(1):49-77
pubmed: 29894226
Plant Sci. 2017 Apr;257:48-62
pubmed: 28224918
Pflugers Arch. 2020 Sep;472(9):1111-1128
pubmed: 32845347
BMC Plant Biol. 2006 Aug 17;6:15
pubmed: 16916444
J Exp Bot. 2020 Oct 7;71(19):5823-5836
pubmed: 32592486
Nat Chem Biol. 2020 Aug;16(8):850-856
pubmed: 32284603
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9):
pubmed: 35217628
BMC Plant Biol. 2017 Mar 28;17(1):66
pubmed: 28347287
Mol Plant. 2019 Sep 2;12(9):1182-1202
pubmed: 31330327
Plant Physiol. 2021 Dec 4;187(4):2005-2016
pubmed: 35235673
Bioinformatics. 2015 May 1;31(9):1493-5
pubmed: 25527831
Genome Res. 2017 Nov;27(11):1795-1806
pubmed: 29030468
Methods Mol Biol. 2020;2139:1-10
pubmed: 32462574
Curr Biol. 2021 Dec 6;31(23):R1535-R1548
pubmed: 34875246
Plant Physiol. 2016 Mar;170(3):1235-54
pubmed: 26628747
Mol Cell Proteomics. 2014 Dec;13(12):3497-506
pubmed: 25225357
Biotechniques. 1996 Aug;21(2):268-72, 274-9
pubmed: 8862812
Plant Cell Physiol. 2022 Jan 25;63(1):120-134
pubmed: 34665867
Front Plant Sci. 2017 Sep 07;8:1486
pubmed: 28936215
PLoS Comput Biol. 2017 Nov 3;13(11):e1005752
pubmed: 29099853
Curr Opin Plant Biol. 2020 Jun;55:28-37
pubmed: 32200227
PLoS Genet. 2011 Jan 06;7(1):e1001263
pubmed: 21253566
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):5049-5058
pubmed: 32051250
Plant Cell. 1994 Nov;6(11):1665-79
pubmed: 7827498
J Plant Biol. 2014 Apr;57(2):67-79
pubmed: 25530701
Science. 2003 Apr 11;300(5617):332-6
pubmed: 12690200
Plant Biol (Stuttg). 2019 Jan;21 Suppl 1:21-30
pubmed: 29933514
Front Plant Sci. 2015 Aug 10;6:612
pubmed: 26322056