Low-Pass Genome Sequencing-Based Detection of Paternity: Validation in Clinical Cytogenetics.
genome sequencing
low-pass genome sequencing
paternity test
prenatal testing
single-nucleotide variants
Journal
Genes
ISSN: 2073-4425
Titre abrégé: Genes (Basel)
Pays: Switzerland
ID NLM: 101551097
Informations de publication
Date de publication:
27 06 2023
27 06 2023
Historique:
received:
12
05
2023
revised:
22
06
2023
accepted:
26
06
2023
medline:
31
7
2023
pubmed:
29
7
2023
entrez:
29
7
2023
Statut:
epublish
Résumé
Submission of a non-biological parent together with a proband for genetic diagnosis would cause a misattributed parentage (MP), possibly leading to misinterpretation of the pathogenicity of genomic variants. Therefore, a rapid and cost-effective paternity/maternity test is warranted before genetic testing. Although low-pass genome sequencing (GS) has been widely used for the clinical diagnosis of germline structural variants, it is limited in paternity/maternity tests due to the inadequate read coverage for genotyping. Herein, we developed rapid paternity/maternity testing based on low-pass GS with trio-based and duo-based analytical modes provided. The optimal read-depth was determined as 1-fold per case regardless of sequencing read lengths, modes, and library construction methods by using 10 trios with confirmed genetic relationships. In addition, low-pass GS with different library construction methods and 1-fold read-depths were performed for 120 prenatal trios prospectively collected, and 1 trio was identified as non-maternity, providing a rate of MP of 0.83% (1/120). All results were further confirmed via quantitative florescent PCR. Overall, we developed a rapid, cost-effective, and sequencing platform-neutral paternity/maternity test based on low-pass GS and demonstrated the feasibility of its clinical use in confirming the parentage for genetic diagnosis.
Identifiants
pubmed: 37510263
pii: genes14071357
doi: 10.3390/genes14071357
pmc: PMC10379141
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Hum Reprod Update. 2021 Jun 22;27(4):673-696
pubmed: 33742206
J Genet Couns. 2022 Jun;31(3):631-640
pubmed: 34826357
Cell. 2022 Sep 1;185(18):3426-3440.e19
pubmed: 36055201
J Mol Diagn. 2014 Sep;16(5):519-526
pubmed: 24998187
Genet Med. 2016 Sep;18(9):940-8
pubmed: 26820068
Hum Genet. 2023 Mar;142(3):363-377
pubmed: 36526900
Prenat Diagn. 2020 Mar;40(4):497-506
pubmed: 31674029
Pediatrics. 2019 Jun;143(6):
pubmed: 31097466
J Mol Diagn. 2020 Jun;22(6):823-840
pubmed: 32344035
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Genet Med. 2018 Jul;20(7):697-707
pubmed: 29095815
Prenat Diagn. 2022 Jun;42(7):862-872
pubmed: 35441720
Genet Med. 2023 Feb;25(2):100316
pubmed: 36507974
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Genes (Basel). 2021 Mar 06;12(3):
pubmed: 33800913
Nat Genet. 2017 Jan;49(1):36-45
pubmed: 27841880
DNA Res. 2019 Aug 1;26(4):313-325
pubmed: 31173071
Forensic Sci Int Genet. 2020 Sep;48:102338
pubmed: 32593163
Genes (Basel). 2021 Mar 22;12(3):
pubmed: 33810139
Genet Med. 2020 Mar;22(3):500-510
pubmed: 31447483
Genomics. 2014 Sep;104(3):170-6
pubmed: 25086333
Leg Med (Tokyo). 2022 Sep;58:102080
pubmed: 35526480
Physiol Genomics. 2018 Aug 1;50(8):563-579
pubmed: 29727589
Leg Med (Tokyo). 2018 May;32:98-103
pubmed: 29626747
Transfus Med Hemother. 2012 Jun;39(3):187-193
pubmed: 22851934
Hum Genet. 2021 Feb;140(2):361-380
pubmed: 32728808
Genet Med. 2021 Jul;23(7):1225-1233
pubmed: 33772221
Front Genet. 2019 Aug 16;10:761
pubmed: 31475041