Electrophysiological insights into deep brain stimulation of the network disorder dystonia.
Animal models of dystonia
Cortico-basal ganglia-thalamo-cortical network
Deep brain stimulation
Dopaminergic dysfunction
Dystonia
Striatal synaptic plasticity
Journal
Pflugers Archiv : European journal of physiology
ISSN: 1432-2013
Titre abrégé: Pflugers Arch
Pays: Germany
ID NLM: 0154720
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
24
11
2022
accepted:
24
07
2023
revised:
02
06
2023
medline:
14
9
2023
pubmed:
2
8
2023
entrez:
2
8
2023
Statut:
ppublish
Résumé
Deep brain stimulation (DBS), a treatment for modulating the abnormal central neuronal circuitry, has become the standard of care nowadays and is sometimes the only option to reduce symptoms of movement disorders such as dystonia. However, on the one hand, there are still open questions regarding the pathomechanisms of dystonia and, on the other hand, the mechanisms of DBS on neuronal circuitry. That lack of knowledge limits the therapeutic effect and makes it hard to predict the outcome of DBS for individual dystonia patients. Finding electrophysiological biomarkers seems to be a promising option to enable adapted individualised DBS treatment. However, biomarker search studies cannot be conducted on patients on a large scale and experimental approaches with animal models of dystonia are needed. In this review, physiological findings of deep brain stimulation studies in humans and animal models of dystonia are summarised and the current pathophysiological concepts of dystonia are discussed.
Identifiants
pubmed: 37530804
doi: 10.1007/s00424-023-02845-5
pii: 10.1007/s00424-023-02845-5
pmc: PMC10499667
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1133-1147Informations de copyright
© 2023. The Author(s).
Références
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW (2019) Cholinergic modulation of striatal microcircuits. Eur J Neurosci 49:604–622. https://doi.org/10.1111/ejn.13949
doi: 10.1111/ejn.13949
pubmed: 29797362
Albanese A, Bhatia K, Bressman SB, DeLong MR, Fahn S, Fung VSC, Hallett M, Jankovic J, Jinnah HA, Klein C, Lang AE, Mink JW, Teller JK (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord 28:863–873. https://doi.org/10.1002/mds.25475
doi: 10.1002/mds.25475
pubmed: 23649720
pmcid: 3729880
Asanuma K, Ma Y, Okulski J, Dhawan V, Chaly T, Carbon M, Bressman SB, Eidelberg D (2005) Decreased striatal D2 receptor binding in non-manifesting carriers of the DYT1 dystonia mutation. Neurol 64:347–349. https://doi.org/10.1212/01.WNL.0000149764.34953.BF
doi: 10.1212/01.WNL.0000149764.34953.BF
Ashkan K, Rogers P, Bergman H, Ughratdar I (2017) Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol 13:548–554. https://doi.org/10.1038/nrneurol.2017.105
doi: 10.1038/nrneurol.2017.105
pubmed: 28752857
Assous M (2021) Striatal cholinergic transmission. focus on nicotinic receptors’ influence in striatal circuits. Eur J Neurosci 53(8):2421–2442. https://doi.org/10.1111/ejn.15135
doi: 10.1111/ejn.15135
pubmed: 33529401
pmcid: 8161166
Assous M, Tepper JM (2019) Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur J Neurosci 49:593–603. https://doi.org/10.1111/ejn.13881
doi: 10.1111/ejn.13881
pubmed: 29480942
Avchalumov Y, Sander SE, Richter F, Porath K, Hamann M, Bode C, Kirschstein T, Köhling R, Richter A (2014) Role of striatal NMDA receptor subunits in a model of paroxysmal dystonia. Exp Neurol 261:677–684. https://doi.org/10.1016/j.expneurol.2014.08.012
doi: 10.1016/j.expneurol.2014.08.012
pubmed: 25139804
Avchalumov Y, Volkmann CE, Rückborn K, Hamann M, Kirschstein T, Richter A, Köhling R (2013) Persistent changes of corticostriatal plasticity in dtsz mutant hamsters after age-dependent remission of dystonia. Neurosci 250:60–69. https://doi.org/10.1016/j.neuroscience.2013.06.048
doi: 10.1016/j.neuroscience.2013.06.048
Balint B, Mencacci NE, Valente EM, Pisani A, Rothwell J, Jankovic J, Vidailhet M, Bhatia KP (2018) Dystonia. Nat Rev Dis Prim 4:25. https://doi.org/10.1038/s41572-018-0023-6
doi: 10.1038/s41572-018-0023-6
pubmed: 30237473
Benabid AL, Koudsie A, Benazzouz A, Vercueil L, Fraix V, Chabardes S, Lebas JF, Pollak P (2001) Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson’s disease. Extension to new indications such as dystonia and epilepsy. J Neurol 248(Suppl):III37–III47. https://doi.org/10.1007/pl00007825
doi: 10.1007/pl00007825
pubmed: 11697687
Bennay M, Gernert M, Richter A (2001) Spontaneous remission of paroxysmal dystonia coincides with normalization of entopeduncular activity in dt(SZ) mutants. J Neurosci 21:RC153
doi: 10.1523/JNEUROSCI.21-13-j0002.2001
pubmed: 11406638
pmcid: 6762368
Bennett BD, Wilson CJ (1999) Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci 19:5586–5596
doi: 10.1523/JNEUROSCI.19-13-05586.1999
pubmed: 10377365
pmcid: 6782311
Bode C, Richter F, Spröte C, Brigadski T, Bauer A, Fietz S, Fritschy J-M, Richter A (2017) Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia. Exp Neurol 287:44–53. https://doi.org/10.1016/j.expneurol.2016.10.013
doi: 10.1016/j.expneurol.2016.10.013
pubmed: 27780732
Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, Ponterio G, Pisani A (2011) Centrality of striatal cholinergic transmission in basal ganglia function. Front Neuroanat 5:6. https://doi.org/10.3389/fnana.2011.00006
doi: 10.3389/fnana.2011.00006
pubmed: 21344017
pmcid: 3036975
Bonsi P, Ponterio G, Vanni V, Tassone A, Sciamanna G, Migliarini S, Martella G, Meringolo M, Dehay B, Doudnikoff E, Zachariou V, Goodchild RE, Mercuri NB, D’Amelio M, Pasqualetti M, Bezard E, Pisani A (2019) RGS9-2 rescues dopamine D2 receptor levels and signaling in DYT1 dystonia mouse models. EMBO Mol Med 11:e9283. https://doi.org/10.15252/emmm.201809283
doi: 10.15252/emmm.201809283
pubmed: 30552094
Brüggemann N, Kühn A, Schneider SA, Kamm C, Wolters A, Krause P, Moro E, Steigerwald F, Wittstock M, Tronnier V, Lozano AM, Hamani C, Poon Y-Y, Zittel S, Wächter T, Deuschl G, Krüger R, Kupsch A, Münchau A et al (2015) Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurol 84:895–903. https://doi.org/10.1212/WNL.0000000000001312
doi: 10.1212/WNL.0000000000001312
Brunori G, Pelletier OB, Stauffer AM, Robishaw JD (2021) Selective manipulation of G-protein γ7 subunit in mice provides new insights into striatal control of motor behavior. J Neurosci 41:9065–9081. https://doi.org/10.1523/JNEUROSCI.1211-21.2021
doi: 10.1523/JNEUROSCI.1211-21.2021
pubmed: 34544837
pmcid: 8570839
Carbon M, Niethammer M, Peng S, Raymond D, Dhawan V, Chaly T, Ma Y, Bressman S, Eidelberg D (2009) Abnormal striatal and thalamic dopamine neurotransmission: genotype-related features of dystonia. Neurol 72:2097–2103. https://doi.org/10.1212/WNL.0b013e3181aa538f
doi: 10.1212/WNL.0b013e3181aa538f
Castela I, Casado-Polanco R, Rubio YV-W, da Silva JA, Marquez R, Pro B, Moratalla R, Redgrave P, Costa RM, Obeso J, Hernandez LF (2023) Selective activation of striatal indirect pathway suppresses levodopa induced-dyskinesias. Neurobiol Dis 176:105930. https://doi.org/10.1016/j.nbd.2022.105930
doi: 10.1016/j.nbd.2022.105930
pubmed: 36414182
Chen W, de Hemptinne C, Miller AM, Leibbrand M, Little SJ, Lim DA, Larson PS, Starr PA (2020) Prefrontal-subthalamic hyperdirect pathway modulates movement inhibition in humans. Neuron 106:579–588.e3. https://doi.org/10.1016/j.neuron.2020.02.012
doi: 10.1016/j.neuron.2020.02.012
pubmed: 32155442
pmcid: 7274135
Cruz BF, Guiomar G, Soares S, Motiwala A, Machens CK, Paton JJ (2022) Action suppression reveals opponent parallel control via striatal circuits. Nature 607:521–526. https://doi.org/10.1038/s41586-022-04894-9
doi: 10.1038/s41586-022-04894-9
pubmed: 35794480
Cury RG, Kalia SK, Shah BB, Jimenez-Shahed J, Prashanth LK, Moro E (2018) Surgical treatment of dystonia. Expert Rev Neurother 18:477–492. https://doi.org/10.1080/14737175.2018.1478288
doi: 10.1080/14737175.2018.1478288
pubmed: 29781334
David HN, Ansseau M, Abraini JH (2005) Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of “intact” animals. Brain Res Brain Res Rev 50:336–360. https://doi.org/10.1016/j.brainresrev.2005.09.002
doi: 10.1016/j.brainresrev.2005.09.002
pubmed: 16278019
Deffains M, Bergman H (2015) Striatal cholinergic interneurons and cortico-striatal synaptic plasticity in health and disease. Mov Disord 30:1014–1025. https://doi.org/10.1002/mds.26300
doi: 10.1002/mds.26300
pubmed: 26095280
Detante O, Vercueil L, Thobois S, Broussolle E, Costes N, Lavenne F, Chabardes S, Lebars D, Vidailhet M, Benabid A-L, Pollak P (2004) Globus pallidus internus stimulation in primary generalized dystonia: a H215O PET study. Brain 127:1899–1908. https://doi.org/10.1093/brain/awh213
doi: 10.1093/brain/awh213
pubmed: 15231585
Ding J, Peterson JD, Surmeier DJ (2008) Corticostriatal and thalamostriatal synapses have distinctive properties. J Neurosci 28:6483–6492. https://doi.org/10.1523/JNEUROSCI.0435-08.2008
doi: 10.1523/JNEUROSCI.0435-08.2008
pubmed: 18562619
pmcid: 3461269
Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307. https://doi.org/10.1016/j.neuron.2010.06.017
doi: 10.1016/j.neuron.2010.06.017
pubmed: 20670836
pmcid: 4085694
Dorst MC, Tokarska A, Zhou M, Lee K, Stagkourakis S, Broberger C, Masmanidis S, Silberberg G (2020) Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner. Nat Commun 11:5113. https://doi.org/10.1038/s41467-020-18882-y
doi: 10.1038/s41467-020-18882-y
pubmed: 33037215
pmcid: 7547109
Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17:S63–S68. https://doi.org/10.1002/mds.10143
doi: 10.1002/mds.10143
pubmed: 11948756
Dressler D, Altenmüller E, Giess R, Krauss JK, Adib Saberi F (2022) The epidemiology of dystonia: the Hannover epidemiology study. J Neurol 269:6483–6493. https://doi.org/10.1007/s00415-022-11310-9
doi: 10.1007/s00415-022-11310-9
pubmed: 35948800
pmcid: 9618521
English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzsáki G, Deisseroth K, Tepper JM, Koos T (2011) GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci 15:123–130. https://doi.org/10.1038/nn.2984
doi: 10.1038/nn.2984
pubmed: 22158514
pmcid: 3245803
Eskow Jaunarajs KL, Bonsi P, Chesselet MF, Standaert DG, Pisani A (2015) Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 127:91–107. https://doi.org/10.1016/j.pneurobio.2015.02.002
doi: 10.1016/j.pneurobio.2015.02.002
pubmed: 25697043
Fan H, Zheng Z, Yin Z, Zhang J, Lu G (2021) Deep brain stimulation treating dystonia: a systematic review of targets, body distributions and etiology classifications. Front Hum Neurosci 15:757579. https://doi.org/10.3389/fnhum.2021.757579
doi: 10.3389/fnhum.2021.757579
pubmed: 34899219
pmcid: 8663760
Flagmeyer I, Haas HL, Stevens DR (1997) Adenosine A1 receptor-mediated depression of corticostriatal and thalamostriatal glutamatergic synaptic potentials in vitro. Brain Res 778:178–185. https://doi.org/10.1016/S0006-8993(97)01060-3
doi: 10.1016/S0006-8993(97)01060-3
pubmed: 9462890
Franz D, Heerdegen M, Santana Kragelund F, Lüttig A, Perl S, Richter A, Köhling R (2023) P-68 Deep brain stimulation alters synaptic tone on ventroanterior-ventrolateral thalamic neurons in dystonic dtsz mutant hamsters. Clin Neurophysiol 148:e39–e40. https://doi.org/10.1016/j.clinph.2023.02.085
doi: 10.1016/j.clinph.2023.02.085
Gernert M, Bennay M, Fedrowitz M, Rehders JH, Richter A (2002) Altered discharge pattern of basal ganglia output neurons in an animal model of idiopathic dystonia. J Neurosci 22:7244–7253
doi: 10.1523/JNEUROSCI.22-16-07244.2002
pubmed: 12177219
pmcid: 6757886
Gernert M, Hamann M, Bennay M, Löscher W, Richter A (2000) Deficit of striatal parvalbumin-reactive GABAergic interneurons and decreased basal ganglia output in a genetic rodent model of idiopathic paroxysmal dystonia. J Neurosci 20:7052–7058
doi: 10.1523/JNEUROSCI.20-18-07052.2000
pubmed: 10995851
pmcid: 6772842
Gernert M, Richter A, Rundfeldt C, Löscher W (1998) Quantitative EEG analysis of depth electrode recordings from several brain regions of mutant hamsters with paroxysmal dystonia discloses frequency changes in the basal ganglia. Mov Disord 13:509–521. https://doi.org/10.1002/mds.870130322
doi: 10.1002/mds.870130322
pubmed: 9613745
Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30:2223–2234. https://doi.org/10.1523/JNEUROSCI.4870-09.2010
doi: 10.1523/JNEUROSCI.4870-09.2010
pubmed: 20147549
pmcid: 2836801
Goldberg JA, Ding JB, Surmeier DJ (2012) Muscarinic modulation of striatal function and circuitry. In: Handbook of Experimental Pharmacology, pp 223–241. https://doi.org/10.1007/978-3-642-23274-9_10
doi: 10.1007/978-3-642-23274-9_10
Goldberg JA, Reynolds JNJ (2011) Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neurosci 198:27–43. https://doi.org/10.1016/j.neuroscience.2011.08.067
doi: 10.1016/j.neuroscience.2011.08.067
Grill WM, Snyder AN, Miocinovic S (2004) Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport 15:1137–1140. https://doi.org/10.1097/00001756-200405190-00011
doi: 10.1097/00001756-200405190-00011
pubmed: 15129161
Grundmann K, Glöckle N, Martella G, Sciamanna G, Hauser T-K, Yu L, Castaneda S, Pichler B, Fehrenbacher B, Schaller M, Nuscher B, Haass C, Hettich J, Yue Z, Nguyen HP, Pisani A, Riess O, Ott T (2012) Generation of a novel rodent model for DYT1 dystonia. Neurobiol Dis 47:61–74. https://doi.org/10.1016/j.nbd.2012.03.024
doi: 10.1016/j.nbd.2012.03.024
pubmed: 22472189
Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C (2009) Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog Neurobiol 89:79–123. https://doi.org/10.1016/j.pneurobio.2009.06.003
doi: 10.1016/j.pneurobio.2009.06.003
pubmed: 19559747
Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74. https://doi.org/10.1016/j.brainresbull.2008.09.013
doi: 10.1016/j.brainresbull.2008.09.013
pubmed: 18950692
Hallett M (2011) Neurophysiology of dystonia: the role of inhibition. Neurobiol Dis 42:177–184. https://doi.org/10.1016/j.nbd.2010.08.025
doi: 10.1016/j.nbd.2010.08.025
pubmed: 20817092
Hamann M, Plank J, Richter F, Bode C, Smiljanic S, Creed M, Nobrega JN, Richter A (2017) Alterations of M1 and M4 acetylcholine receptors in the genetically dystonic (dt(sz)) hamster and moderate antidystonic efficacy of M1 and M4 anticholinergics. Neurosci 357:84–98. https://doi.org/10.1016/j.neuroscience.2017.05.051
doi: 10.1016/j.neuroscience.2017.05.051
Hamann M, Richter A (2004) Striatal increase of extracellular dopamine levels during dystonic episodes in a genetic model of paroxysmal dyskinesia. Neurobiol Dis 16:78–84. https://doi.org/10.1016/j.nbd.2004.01.005
doi: 10.1016/j.nbd.2004.01.005
pubmed: 15207264
Heerdegen M, Zwar M, Franz D, Hörnschemeyer J, Neubert V, Plocksties F, Niemann C, Timmermann D, Bahls C, van Rienen U, Paap M, Perl S, Lüttig A, Richter A, Köhling R (2021) Mechanisms of pallidal deep brain stimulation: alteration of cortico-striatal synaptic communication in a dystonia animal model. Neurobiol Dis 154:105341. https://doi.org/10.1016/j.nbd.2021.105341
doi: 10.1016/j.nbd.2021.105341
pubmed: 33753292
Helmschrodt C, Becker S, Perl S, Schulz A, Richter A (2020) Development of a fast liquid chromatography-tandem mass spectrometry method for simultaneous quantification of neurotransmitters in murine microdialysate. Anal Bioanal Chem 412:7777–7787. https://doi.org/10.1007/s00216-020-02906-z
doi: 10.1007/s00216-020-02906-z
pubmed: 32939566
pmcid: 7550289
Hernández-Flores T, Hernández-González O, Pérez-Ramírez MB, Lara-González E, Arias-García MA, Duhne M, Pérez-Burgos A, Prieto GA, Figueroa A, Galarraga E, Bargas J (2015) Modulation of direct pathway striatal projection neurons by muscarinic M
doi: 10.1016/j.neuropharm.2014.09.028
Holsheimer J, Demeulemeester H, Nuttin B, De Sutter P (2000) Identification of the target neuronal elements in electrical deep brain stimulation. Eur J Neurosci 12:4573–4577. https://doi.org/10.1046/j.1460-9568.2000.01306.x
doi: 10.1046/j.1460-9568.2000.01306.x
pubmed: 11122371
Holsheimer J, Dijkstra EA, Demeulemeester H, Nuttin B (2000) Chronaxie calculated from current-duration and voltage-duration data. J Neurosci Methods 97:45–50. https://doi.org/10.1016/s0165-0270(00)00163-1
doi: 10.1016/s0165-0270(00)00163-1
pubmed: 10771074
Imbriani P, Ponterio G, Tassone A, Sciamanna G, El Atiallah I, Bonsi P, Pisani A (2020) Models of dystonia: an update. J Neurosci Methods 339:108728. https://doi.org/10.1016/j.jneumeth.2020.108728
doi: 10.1016/j.jneumeth.2020.108728
pubmed: 32289333
Isaias IU, Alterman RL, Tagliati M (2008) Outcome predictors of pallidal stimulation in patients with primary dystonia: the role of disease duration. Brain 131:1895–1902. https://doi.org/10.1093/brain/awn120
doi: 10.1093/brain/awn120
pubmed: 18567622
Jinnah HA, Neychev V, Hess EJ (2017) The anatomical basis for dystonia: the motor network model. Tremor Other Hyperkinet Mov (N Y) 7:506. https://doi.org/10.7916/D8V69X3S
doi: 10.7916/D8V69X3S
pubmed: 29123945
Klein C (2014) Genetics in dystonia. Parkinsonism Relat Disord 20(Suppl 1):S137–S142. https://doi.org/10.1016/S1353-8020(13)70033-6
doi: 10.1016/S1353-8020(13)70033-6
pubmed: 24262166
Knorr S, Rauschenberger L, Pasos UR, Friedrich MU, Peach RL, Grundmann-Hauser K, Ott T, O’Leary A, Reif A, Tovote P, Volkmann J, Ip CW (2021) The evolution of dystonia-like movements in TOR1A rats after transient nerve injury is accompanied by dopaminergic dysregulation and abnormal oscillatory activity of a central motor network. Neurobiol Dis 154:105337. https://doi.org/10.1016/j.nbd.2021.105337
doi: 10.1016/j.nbd.2021.105337
pubmed: 33753289
Köhling R, Koch U-R, Hamann M, Richter A (2004) Increased excitability in cortico-striatal synaptic pathway in a model of paroxysmal dystonia. Neurobiol Dis 16:236–245. https://doi.org/10.1016/j.nbd.2004.01.012
doi: 10.1016/j.nbd.2004.01.012
pubmed: 15207280
Krack P, Martinez-Fernandez R, Del Alamo M, Obeso JA (2017) Current applications and limitations of surgical treatments for movement disorders. Mov Disord 32:36–52. https://doi.org/10.1002/mds.26890
doi: 10.1002/mds.26890
pubmed: 28124435
Krack P, Vercueil L (2001) Review of the functional surgical treatment of dystonia. Eur J Neurol 8:389–399. https://doi.org/10.1046/j.1468-1331.2001.00231.x
doi: 10.1046/j.1468-1331.2001.00231.x
pubmed: 11554902
Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM (2021) Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 17:75–87. https://doi.org/10.1038/s41582-020-00426-z
doi: 10.1038/s41582-020-00426-z
pubmed: 33244188
Krauss JK, Yianni J, Loher TJ, Aziz TZ (2004) Deep brain stimulation for dystonia. J Clin Neurophysiol 21:18–30. https://doi.org/10.1097/00004691-200401000-00004
doi: 10.1097/00004691-200401000-00004
pubmed: 15097291
Lacey CJ, Bolam JP, Magill PJ (2007) Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci 27:4374–4384. https://doi.org/10.1523/JNEUROSCI.5519-06.2007
doi: 10.1523/JNEUROSCI.5519-06.2007
pubmed: 17442822
pmcid: 6672301
Lange F, Roothans J, Wichmann T, Gelbrich G, Röser C, Volkmann J, Reich M (2021) DIPS (Dystonia Image-based Programming of Stimulation: a prospective, randomized, double-blind crossover trial). Neurol Res Pract 3:65. https://doi.org/10.1186/s42466-021-00165-6
doi: 10.1186/s42466-021-00165-6
pubmed: 34924027
pmcid: 8686267
Lehéricy S, Tijssen MAJ, Vidailhet M, Kaji R, Meunier S (2013) The anatomical basis of dystonia: current view using neuroimaging. Mov Disord 28:944–957. https://doi.org/10.1002/mds.25527
doi: 10.1002/mds.25527
pubmed: 23893451
Lempka SF, Johnson MD, Miocinovic S, Vitek JL, McIntyre CC (2010) Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clin Neurophysiol 121:2128–2133. https://doi.org/10.1016/j.clinph.2010.04.026
doi: 10.1016/j.clinph.2010.04.026
pubmed: 20493764
pmcid: 2928413
Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC (2009) In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng 6:046001. https://doi.org/10.1088/1741-2560/6/4/046001
doi: 10.1088/1741-2560/6/4/046001
pubmed: 19494421
pmcid: 2861504
Lerner TN, Kreitzer AC (2011) Neuromodulatory control of striatal plasticity and behavior. Curr Opin Neurobiol 21:322–327. https://doi.org/10.1016/j.conb.2011.01.005
doi: 10.1016/j.conb.2011.01.005
pubmed: 21333525
pmcid: 3092792
Lofredi R, Kühn AA (2022) Brain oscillatory dysfunctions in dystonia. Handb Clin Neurol 184:249–257. https://doi.org/10.1016/B978-0-12-819410-2.00026-6
doi: 10.1016/B978-0-12-819410-2.00026-6
pubmed: 35034739
Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y, Volkmann J, Krauss JK (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15:148–160. https://doi.org/10.1038/s41582-018-0128-2
doi: 10.1038/s41582-018-0128-2
pubmed: 30683913
pmcid: 6397644
Martella G, Tassone A, Sciamanna G, Platania P, Cuomo D, Viscomi MT, Bonsi P, Cacci E, Biagioni S, Usiello A, Bernardi G, Sharma N, Standaert DG, Pisani A (2009) Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine. Brain 132:2336–2349. https://doi.org/10.1093/brain/awp194
doi: 10.1093/brain/awp194
pubmed: 19641103
pmcid: 2766181
Mazere J, Dilharreguy B, Catheline G, Vidailhet M, Deffains M, Vimont D, Ribot B, Barse E, Cif L, Mazoyer B, Langbour N, Pisani A, Allard M, Lamare F, Guehl D, Fernandez P, Burbaud P (2021) Striatal and cerebellar vesicular acetylcholine transporter expression is disrupted in human DYT1 dystonia. Brain 144:909–923. https://doi.org/10.1093/brain/awaa465
doi: 10.1093/brain/awaa465
pubmed: 33638639
McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91:1457–1469. https://doi.org/10.1152/jn.00989.2003
doi: 10.1152/jn.00989.2003
pubmed: 14668299
McIntyre CC, Hahn PJ (2010) Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis 38:329–337. https://doi.org/10.1016/j.nbd.2009.09.022
doi: 10.1016/j.nbd.2009.09.022
pubmed: 19804831
Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28:11221–11230. https://doi.org/10.1523/JNEUROSCI.2780-08.2008
doi: 10.1523/JNEUROSCI.2780-08.2008
pubmed: 18971464
pmcid: 6671499
Mundinger F (1977) Neue stereotaktisch-funktionelle Behandlungsmethode des Torticollis spasmodicus mit Hirnstimulatoren. Med Klin 72(46):1982–1986
Nair AG, Castro LRV, El Khoury M, Gorgievski V, Giros B, Tzavara ET, Hellgren-Kotaleski J, Vincent P (2019) The high efficacy of muscarinic M4 receptor in D1 medium spiny neurons reverses striatal hyperdopaminergia. Neuropharmacol 146:74–83. https://doi.org/10.1016/j.neuropharm.2018.11.029
doi: 10.1016/j.neuropharm.2018.11.029
Neumann W-J, Horn A, Ewert S, Huebl J, Brücke C, Slentz C, Schneider G-H, Kühn AA (2017) A localized pallidal physiomarker in cervical dystonia. Ann Neurol 82:912–924. https://doi.org/10.1002/ana.25095
doi: 10.1002/ana.25095
pubmed: 29130551
Nobrega JN, Richter A, Tozman N, Jiwa D, Löscher W (1996) Quantitative autoradiography reveals regionally selective changes in dopamine D1 and D2 receptor binding in the genetically dystonic hamster. Neurosci 71:927–937. https://doi.org/10.1016/0306-4522(95)00511-0
doi: 10.1016/0306-4522(95)00511-0
Paap M, Perl S, Lüttig A, Plocksties F, Niemann C, Timmermann D, Bahls C, van Rienen U, Franz D, Zwar M, Rohde M, Köhling R, Richter A (2020) Deep brain stimulation by optimized stimulators in a phenotypic model of dystonia: effects of different frequencies. Neurobiol Dis 147:105163. https://doi.org/10.1016/j.nbd.2020.105163
doi: 10.1016/j.nbd.2020.105163
pubmed: 33166698
Pauls KAM, Bröckelmann PJ, Hammesfahr S, Becker J, Hellerbach A, Visser-Vandewalle V, Dembek TA, Meister IG, Timmermann L (2018) Dysarthria in pallidal deep brain stimulation in dystonia depends on the posterior location of active electrode contacts: a pilot study. Parkinsonism Relat Disord 47:71–75. https://doi.org/10.1016/j.parkreldis.2017.11.002
doi: 10.1016/j.parkreldis.2017.11.002
pubmed: 29137852
Pelosi A, Menardy F, Popa D, Girault J-A, Hervé D (2017) Heterozygous Gnal mice are a novel animal model with which to study dystonia pathophysiology. J Neurosci 37:6253–6267. https://doi.org/10.1523/JNEUROSCI.1529-16.2017
doi: 10.1523/JNEUROSCI.1529-16.2017
pubmed: 28546310
pmcid: 6705700
Perl S, Lüttig A, Köhling R, Richter A (2022) Deep brain stimulation in animal models of dystonia. Neurobiol Dis 175:105912. https://doi.org/10.1016/j.nbd.2022.105912
doi: 10.1016/j.nbd.2022.105912
pubmed: 36307031
Pisani A, Bernardi G, Ding J, Surmeier DJ (2007) Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30:545–553. https://doi.org/10.1016/j.tins.2007.07.008
doi: 10.1016/j.tins.2007.07.008
pubmed: 17904652
Plocksties F, Kober M, Niemann C, Heller J, Fauser M, Nüssel M, Uster F, Franz D, Zwar M, Lüttig A, Kröger J, Harloff J, Schulz A, Richter A, Köhling R, Timmermann D, Storch A (2021) The software defined implantable modular platform (STELLA) for preclinical deep brain stimulation research in rodents. J Neural Eng 18:056032. https://doi.org/10.1088/1741-2552/ac23e1
doi: 10.1088/1741-2552/ac23e1
Quartarone A, Hallett M (2013) Emerging concepts in the physiological basis of dystonia. Mov Disord 28:958–967. https://doi.org/10.1002/mds.25532
doi: 10.1002/mds.25532
pubmed: 23893452
pmcid: 4159671
Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R (2022) A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Exp Neurol 355:114140. https://doi.org/10.1016/j.expneurol.2022.114140
doi: 10.1016/j.expneurol.2022.114140
pubmed: 35690132
Reynolds JNJ, Avvisati R, Dodson PD, Fisher SD, Oswald MJ, Wickens JR, Zhang Y-F (2022) Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum. Nat Commun 13:1296. https://doi.org/10.1038/s41467-022-28950-0
doi: 10.1038/s41467-022-28950-0
pubmed: 35277506
pmcid: 8917208
Richter A, Hamann M (2001) Effects of adenosine receptor agonists and antagonists in a genetic animal model of primary paroxysmal dystonia. Br J Pharmacol 134:343–352. https://doi.org/10.1038/sj.bjp.0704268
doi: 10.1038/sj.bjp.0704268
pubmed: 11564652
pmcid: 1572962
Richter F, Bauer A, Perl S, Schulz A, Richter A (2019) Optogenetic augmentation of the hypercholinergic endophenotype in DYT1 knock-in mice induced erratic hyperactive movements but not dystonia. EBioMedicine 41:649–658. https://doi.org/10.1016/j.ebiom.2019.02.042
doi: 10.1016/j.ebiom.2019.02.042
pubmed: 30819512
pmcid: 6444071
Richter F, Richter A (2014) Genetic animal models of dystonia: common features and diversities. Prog Neurobiol 121:91–113. https://doi.org/10.1016/j.pneurobio.2014.07.002
doi: 10.1016/j.pneurobio.2014.07.002
pubmed: 25034123
Rossi MA, Calakos N, Yin HH (2015) Spotlight on movement disorders: what optogenetics has to offer. Mov Disord 30:624–631. https://doi.org/10.1002/mds.26184
doi: 10.1002/mds.26184
pubmed: 25777796
pmcid: 4397176
Scheller U, Lofredi R, van Wijk BCM, Saryyeva A, Krauss JK, Schneider G-H, Kroneberg D, Krause P, Neumann W-J, Kühn AA (2019) Pallidal low-frequency activity in dystonia after cessation of long-term deep brain stimulation. Mov Disord 34:1734–1739. https://doi.org/10.1002/mds.27838
doi: 10.1002/mds.27838
pubmed: 31483903
Schirinzi T, Sciamanna G, Mercuri NB, Pisani A (2018) Dystonia as a network disorder: a concept in evolution. Curr Opin Neurol 31:498–503. https://doi.org/10.1097/WCO.0000000000000580
doi: 10.1097/WCO.0000000000000580
pubmed: 29746398
Schulz JM, Reynolds JNJ (2013) Pause and rebound: sensory control of cholinergic signaling in the striatum. Trends Neurosci 36:41–50. https://doi.org/10.1016/j.tins.2012.09.006
doi: 10.1016/j.tins.2012.09.006
pubmed: 23073210
Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, Merkus MP, Speelman JD (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342:461–468. https://doi.org/10.1056/NEJM200002173420703
doi: 10.1056/NEJM200002173420703
pubmed: 10675426
Sciamanna G, Ponterio G, Vanni V, Laricchiuta D, Martella G, Bonsi P, Meringolo M, Tassone A, Mercuri NB, Pisani A (2020) Optogenetic activation of striatopallidal neurons reveals altered HCN gating in DYT1 dystonia. Cell Rep 31:107644. https://doi.org/10.1016/j.celrep.2020.107644
doi: 10.1016/j.celrep.2020.107644
pubmed: 32433955
Sciamanna G, Tassone A, Mandolesi G, Puglisi F, Ponterio G, Martella G, Madeo G, Bernardi G, Standaert DG, Bonsi P, Pisani A (2012) Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J Neurosci 32:11991–12004. https://doi.org/10.1523/JNEUROSCI.0041-12.2012
doi: 10.1523/JNEUROSCI.0041-12.2012
pubmed: 22933784
pmcid: 3471539
Sciamanna G, Tassone A, Martella G, Mandolesi G, Puglisi F, Cuomo D, Madeo G, Ponterio G, Standaert DG, Bonsi P, Pisani A (2011) Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia. PLoS One 6:e24261. https://doi.org/10.1371/journal.pone.0024261
doi: 10.1371/journal.pone.0024261
pubmed: 21912682
pmcid: 3166312
Shen W, Plotkin JL, Francardo V, Ko WKD, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ (2015) M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L-DOPA-induced dyskinesia. Neuron 88:762–773. https://doi.org/10.1016/j.neuron.2015.10.039
doi: 10.1016/j.neuron.2015.10.039
pubmed: 26590347
pmcid: 4864040
Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, Surmeier DJ (2007) Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10:1458–1466. https://doi.org/10.1038/nn1972
doi: 10.1038/nn1972
pubmed: 17906621
Siettos C, Starke J (2016) Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools. Wiley Interdiscip Rev Syst Biol Med 8:438–458. https://doi.org/10.1002/wsbm.1348
doi: 10.1002/wsbm.1348
pubmed: 27340949
Sieveritz B, García-Muñoz M, Arbuthnott GW (2019) Thalamic afferents to prefrontal cortices from ventral motor nuclei in decision-making. Eur J Neurosci 49:646–657. https://doi.org/10.1111/ejn.14215
doi: 10.1111/ejn.14215
pubmed: 30346073
Silberstein P, Kühn AA, Kupsch A, Trottenberg T, Krauss JK, Wöhrle JC, Mazzone P, Insola A, Di Lazzaro V, Oliviero A, Aziz T, Brown P (2003) Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 126:2597–2608. https://doi.org/10.1093/brain/awg267
doi: 10.1093/brain/awg267
pubmed: 12937079
Smit M, Albanese A, Benson M, Edwards MJ, Graessner H, Hutchinson M, Jech R, Krauss JK, Morgante F, Pérez Dueñas B, Reilly RB, Tinazzi M, Contarino MF, MAJ T, Collaborative Working Group (2021) Dystonia management: what to expect from the future? The perspectives of patients and clinicians within DystoniaNet Europe. Front Neurol 12:646841. https://doi.org/10.3389/fneur.2021.646841
doi: 10.3389/fneur.2021.646841
pubmed: 34149592
pmcid: 8211212
Spiliotis K, Starke J, Franz D, Richter A, Köhling R (2022) Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model. Biol Cybern 116:93–116. https://doi.org/10.1007/s00422-021-00909-2
doi: 10.1007/s00422-021-00909-2
pubmed: 34894291
Straub C, Tritsch NX, Hagan NA, Gu C, Sabatini BL (2014) Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J Neurosci 34:8557–8569. https://doi.org/10.1523/JNEUROSCI.0589-14.2014
doi: 10.1523/JNEUROSCI.0589-14.2014
pubmed: 24948810
pmcid: 4061393
Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235. https://doi.org/10.1016/j.tins.2007.03.008
doi: 10.1016/j.tins.2007.03.008
pubmed: 17408758
Surmeier DJ, Shen W, Day M, Gertler T, Chan S, Tian X, Plotkin JL (2010) The role of dopamine in modulating the structure and function of striatal circuits. Prog Brain Res 183:149–167. https://doi.org/10.1016/S0079-6123(10)83008-0
doi: 10.1016/S0079-6123(10)83008-0
pubmed: 20696319
pmcid: 4431764
Tepper JM, Koós T, Ibanez-Sandoval O, Tecuapetla F, Faust TW, Assous M (2018) Heterogeneity and diversity of striatal GABAergic interneurons: update 2018. Front Neuroanat 12:91. https://doi.org/10.3389/fnana.2018.00091
doi: 10.3389/fnana.2018.00091
pubmed: 30467465
pmcid: 6235948
Thenganatt MA, Jankovic J (2014) Treatment of dystonia. Neurotherapeutics 11:139–152. https://doi.org/10.1007/s13311-013-0231-4
doi: 10.1007/s13311-013-0231-4
pubmed: 24142590
Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64. https://doi.org/10.1016/j.neuron.2012.04.038
doi: 10.1016/j.neuron.2012.04.038
pubmed: 22794260
Tisch S, Rothwell JC, Bhatia KP, Quinn N, Zrinzo L, Jahanshahi M, Ashkan K, Hariz M, Limousin P (2007) Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia. Exp Neurol 206:80–85. https://doi.org/10.1016/j.expneurol.2007.03.027
doi: 10.1016/j.expneurol.2007.03.027
pubmed: 17498697
Tisch S, Rothwell JC, Limousin P, Hariz MI, Corcos DM (2007) The physiological effects of pallidal deep brain stimulation in dystonia. IEEE Trans Neural Syst Rehabil Eng 15:166–172. https://doi.org/10.1109/TNSRE.2007.896994
doi: 10.1109/TNSRE.2007.896994
pubmed: 17601185
Tozzi A, de Iure A, Di Filippo M, Tantucci M, Costa C, Borsini F, Ghiglieri V, Giampà C, Fusco FR, Picconi B, Calabresi P (2011) The distinct role of medium spiny neurons and cholinergic interneurons in the D
doi: 10.1523/JNEUROSCI.4082-10.2011
pubmed: 21289195
pmcid: 6623738
Tozzi A, Tscherter A, Belcastro V, Tantucci M, Costa C, Picconi B, Centonze D, Calabresi P, Borsini F (2007) Interaction of A2A adenosine and D2 dopamine receptors modulates corticostriatal glutamatergic transmission. Neuropharmacol 53:783–789. https://doi.org/10.1016/j.neuropharm.2007.08.006
doi: 10.1016/j.neuropharm.2007.08.006
Tsuboi T, Wong JK, Almeida L, Hess CW, Wagle Shukla A, Foote KD, Okun MS, Ramirez-Zamora A (2020) A pooled meta-analysis of GPi and STN deep brain stimulation outcomes for cervical dystonia. J Neurol 267:1278–1290. https://doi.org/10.1007/s00415-020-09703-9
doi: 10.1007/s00415-020-09703-9
pubmed: 31938862
Tucker HR, Mahoney E, Chhetri A, Unger K, Mamone G, Kim G, Audil A, Moolick B, Molho ES, Pilitsis JG, Shin DS (2019) Deep brain stimulation of the ventroanterior and ventrolateral thalamus improves motor function in a rat model of Parkinson’s disease. Exp Neurol 317:155–167. https://doi.org/10.1016/j.expneurol.2019.03.008
doi: 10.1016/j.expneurol.2019.03.008
pubmed: 30890329
Vercueil L, Pollak P, Fraix V, Caputo E, Moro E, Benazzouz A, Xie J, Koudsie A, Benabid AL (2001) Deep brain stimulation in the treatment of severe dystonia. J Neurol 248:695–700. https://doi.org/10.1007/s004150170116
doi: 10.1007/s004150170116
pubmed: 11569899
Vidailhet M, Jutras M-F, Grabli D, Roze E (2013) Deep brain stimulation for dystonia. J Neurol Neurosurg Psychiatry 84:1029–1042. https://doi.org/10.1136/jnnp-2011-301714
doi: 10.1136/jnnp-2011-301714
Vidailhet M, Vercueil L, Houeto J-L, Krystkowiak P, Lagrange C, Yelnik J, Bardinet E, Benabid A-L, Navarro S, Dormont D, Grand S, Blond S, Ardouin C, Pillon B, Dujardin K, Hahn-Barma V, Agid Y, Destée A, Pollak P, French SPIDY Study Group (2007) Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol 6:223–229. https://doi.org/10.1016/S1474-4422(07)70035-2
doi: 10.1016/S1474-4422(07)70035-2
pubmed: 17303528
Volkmann J, Wolters A, Kupsch A, Müller J, Kühn AA, Schneider G-H, Poewe W, Hering S, Eisner W, Müller J-U, Deuschl G, Pinsker MO, Skogseid I-M, Roeste GK, Krause M, Tronnier V, Schnitzler A, Voges J, Nikkhah G et al (2012) Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurol 11:1029–1038. https://doi.org/10.1016/S1474-4422(12)70257-0
doi: 10.1016/S1474-4422(12)70257-0
pubmed: 23123071
Wichmann T, DeLong MR (2016) Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality? Neurotherapeutics 13:264–283. https://doi.org/10.1007/s13311-016-0426-6
doi: 10.1007/s13311-016-0426-6
pubmed: 26956115
pmcid: 4824026
Wichmann T, Dostrovsky JO (2011) Pathological basal ganglia activity in movement disorders. Neurosci 198:232–244. https://doi.org/10.1016/j.neuroscience.2011.06.048
doi: 10.1016/j.neuroscience.2011.06.048
Wilson BK, Hess EJ (2013) Animal models for dystonia. Mov Disord 28:982–989. https://doi.org/10.1002/mds.25526
doi: 10.1002/mds.25526
pubmed: 23893454
pmcid: 3728703
Wree A, Schmitt O (2015) Basal ganglia. Brain Mapp An Encycl Ref 2:217–227. https://doi.org/10.1016/B978-0-12-397025-1.00215-3
doi: 10.1016/B978-0-12-397025-1.00215-3
Zauber SE, Watson N, Comella CL, Bakay RAE, Metman LV (2009) Stimulation-induced parkinsonism after posteroventral deep brain stimulation of the globus pallidus internus for craniocervical dystonia. J Neurosurg 110:229–233. https://doi.org/10.3171/2008.6.17621
doi: 10.3171/2008.6.17621
Zhang J, Zhang K, Wang Z, Ge M, Ma Y (2006) Deep brain stimulation in the treatment of secondary dystonia. Chin Med J 119:2069–2074
doi: 10.1097/00029330-200612020-00008
pubmed: 17199958