Changes in the Gut Microbiota Composition and Their Relation to Dietary Intake After Bariatric Surgery.
Diet
Food group
Gastric bypass
Gut microbiota
Sleeve gastrectomy
Journal
Obesity surgery
ISSN: 1708-0428
Titre abrégé: Obes Surg
Pays: United States
ID NLM: 9106714
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
12
06
2023
accepted:
25
07
2023
revised:
18
07
2023
medline:
18
8
2023
pubmed:
2
8
2023
entrez:
2
8
2023
Statut:
ppublish
Résumé
Prior studies have demonstrated that both dietary components and bariatric surgery modify the gut microbiota's composition. However, there is a scarcity of research that has examined the relationship between post-surgical dietary intake and changes in the gut microbiota. The aim of this study was to assess changes in gut microbiota following bariatric surgery and examine their association with postoperative dietary intake. The present study involved a sample of 42 adult women who were potential candidates for bariatric surgery, i.e., laparoscopic Roux-en-Y gastric bypass (LRYGB) or sleeve gastrectomy (LSG). The assessment of dietary intake was conducted through the use of three-day food records, both at baseline and six months following the surgical procedure. The gut microbiota was determined through the detection of 16S ribosomal RNA (16S rRNA) gene sequencing. After six months, a significant increase in abundance of Firmicutes (P = 0.01), Bifidobacterium (P = 0.01), and Ruminococcus (P = 0.04) in the LSG group was found. In contrast to the observed rise in Enterobacteria (P = 0.02) levels in the LRYGB group, no significant changes were detected in the composition of other gut microbiota over the 6-month monitoring period subsequent to LRYGB. The results of our study indicate that there is not a statistically significant relationship between dietary consumption and changes in the composition of the gut microbiota in individuals who have undergone LRYGB and LSG. Our findings suggest that there may not be a significant correlation between dietary intake following LRYGB and LSG, and the observed alterations in the gut microbiota during a six-month period of observation. Nevertheless, it is important to acknowledge that the sample size utilized in our study was limited, potentially leading to reduced statistical power and the possibility of yielding findings that do not accurately reflect reality.
Identifiants
pubmed: 37530921
doi: 10.1007/s11695-023-06760-7
pii: 10.1007/s11695-023-06760-7
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2866-2873Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.
Bagheri S, Zolghadri S, Stanek A. Beneficial effects of anti-inflammatory diet in modulating gut microbiota and controlling obesity. Nutrients. 2022;14(19):3985.
pubmed: 36235638
pmcid: 9572805
doi: 10.3390/nu14193985
Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–5.
pubmed: 19498350
doi: 10.1038/oby.2009.167
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.
pubmed: 19043404
doi: 10.1038/nature07540
Lin BY, Lin WD, Huang CK, Hsin MC, Lin WY, Pryor AD. Changes of gut microbiota between different weight reduction programs. Surg Obes Relat Dis. 2019;15(5):749–58.
pubmed: 30935838
doi: 10.1016/j.soard.2019.01.026
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.
doi: 10.1038/nature12506
pubmed: 23985870
Seganfredo FB, Blume CA, Moehlecke M, Giongo A, Casagrande DS, Spolidoro JVN, et al. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes Rev. 2017;18(8):832–51.
pubmed: 28524627
doi: 10.1111/obr.12541
Koutoukidis DA, Jebb SA, Zimmerman M, Otunla A, Henry JA, Ferrey A, et al. The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and meta-analysis. Gut microbes. 2022;14(1):2020068.
pubmed: 35040746
pmcid: 8796717
doi: 10.1080/19490976.2021.2020068
Debédat J, Clément K, Aron-Wisnewsky J. Gut microbiota dysbiosis in human obesity: impact of bariatric surgery. Curr Obes Rep. 2019;8(3):229–42.
pubmed: 31197613
doi: 10.1007/s13679-019-00351-3
Luijten J, Vugts G, Nieuwenhuijzen GAP, Luyer MDP. The importance of the microbiome in bariatric surgery: a systematic review. Obes Surg. 2019;29(7):2338–49.
pubmed: 30982169
doi: 10.1007/s11695-019-03863-y
Farin W, Oñate FP, Plassais J, Bonny C, Beglinger C, Woelnerhanssen B, et al. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis. Surg Obes Relat Dis. 2020;16(7):852–62.
pubmed: 32360114
doi: 10.1016/j.soard.2020.03.014
Santos JM, Mathew MS, Shah N, Pajuelo-Vasquez R, Mistry AM, Heindl SE. Pre and post-operative alterations of the gastrointestinal microbiome following bariatric surgery. Cureus. 2021;13(2):e13057.
pubmed: 33680599
pmcid: 7929544
Crommen S, Mattes A, Simon MC. Microbial adaptation due to gastric bypass surgery: the nutritional impact. Nutrients. 2020;12(4):1199.
pubmed: 32344612
pmcid: 7230554
doi: 10.3390/nu12041199
Billeter AT, de la Garza Herrera JR, Scheurlen KM, Nickel F, Billmann F, Müller-Stich BP. Managment of endocine disease: which metabolic procedure? Comparing outcomes in sleeve gastrectomy and Roux-en Y gastric bypass. Eur J Endocrinol. 2018;179(2):R77–93.
pubmed: 29764908
doi: 10.1530/EJE-18-0009
Campisciano G, Palmisano S, Cason C, Giuricin M, Silvestri M, Guerra M, et al. Gut microbiota characterisation in obese patients before and after bariatric surgery. Benef Microbes. 2018;9(3):367–73.
pubmed: 29482339
doi: 10.3920/BM2017.0152
Palmisano S, Campisciano G, Silvestri M, Guerra M, Giuricin M, Casagranda B, et al. Changes in gut microbiota composition after bariatric surgery: a new balance to decode. J Gastrointest Surg. 2020;24(8):1736–46.
pubmed: 31388884
doi: 10.1007/s11605-019-04321-x
Wang FG, Bai RX, Yan WM, Yan M, Dong LY, Song MM. Differential composition of gut microbiota among healthy volunteers, morbidly obese patients and post-bariatric surgery patients. Exp Ther Med. 2019;17(3):2268–78.
pubmed: 30867711
pmcid: 6395995
Kellerer T, Brandl B, Büttner J, Lagkouvardos I, Hauner H, Skurk T. Impact of laparoscopic sleeve gastrectomy on gut permeability in morbidly obese subjects. Obes Surg. 2019;29(7):2132–43.
pubmed: 30903427
doi: 10.1007/s11695-019-03815-6
Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70.
pubmed: 19164560
pmcid: 2629490
doi: 10.1073/pnas.0812600106
Anhê FF, Varin TV, Schertzer JD, Marette A. The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Can J. Diabetes. 2017;14:439–47.
doi: 10.1016/j.jcjd.2017.02.002
Shen N, Caixas A, Ahlers M, Patel K, Gao Z, Dutia R, et al. Longitudinal changes of microbiome composition and microbial metabolomics after surgical weight loss in individuals with obesity. Surg Obes Relat Dis. 2019;15:1367–73.
pubmed: 31296445
pmcid: 6722012
doi: 10.1016/j.soard.2019.05.038
Wagner NRF, Zaparolli MR, Cruz MRR, Schieferdecker MEM, Campos ACL. Postoperative changes in intestinal microbiota and use of probiotics in Roux-en-Y gastric bypass and sleeve vertical gastrectomy: an integrative review. ABCD Arquivos Brasileiros de Cirurgia Digestiva (São Paulo). 31(4):e1400.
Kikuchi R, Irie J, Yamada-Goto N, Kikkawa E, Seki Y, Kasama K, et al. The impact of laparoscopic sleeve gastrectomy with duodenojejunal bypass on intestinal microbiota differs from that of laparoscopic sleeve gastrectomy in Japanese patients with obesity. Clin Drug Investig. 2018;38(6):545–52.
pubmed: 29508311
doi: 10.1007/s40261-018-0638-0
Lee CJ, Florea L, Sears CL, Maruthur N, Potter JJ, Schweitzer M, et al. Changes in gut microbiome after bariatric surgery versus medical weight loss in a pilot randomized trial. Obes Surg. 2019;29(10):3239–45.
pubmed: 31256356
doi: 10.1007/s11695-019-03976-4
Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.
pubmed: 26244932
pmcid: 4537510
doi: 10.1016/j.cmet.2015.07.009
Sánchez-Alcoholado L, Gutiérrez-Repiso C, Gómez-Pérez AM, García-Fuentes E, Tinahones FJ, Moreno-Indias I. Gut microbiota adaptation after weight loss by Roux-en-Y gastric bypass or sleeve gastrectomy bariatric surgeries. Surg Obes Relat Dis. 2019;15(11):1888–95.
pubmed: 31648978
doi: 10.1016/j.soard.2019.08.551
Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med. 2017;56:75–89.
pubmed: 28390813
pmcid: 5603298
doi: 10.1016/j.mam.2017.04.001
Sweeney TE, Morton JM. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract Res Clin Gastroenterol. 2014;28(4):727–40.
pubmed: 25194186
pmcid: 4399638
doi: 10.1016/j.bpg.2014.07.016
Celiker H. A new proposed mechanism of action for gastric bypass surgery: air hypothesis. Med. Hypotheses. 2017;107:81–9.
pubmed: 28915970
doi: 10.1016/j.mehy.2017.08.012
Salazar N, Ponce-Alonso M, Garriga M, Sánchez-Carrillo S, Hernández-Barranco AM, Redruello B, et al. Fecal metabolome and bacterial composition in severe obesity: impact of diet and bariatric surgery. Gut Microbes. 2022;14(1):2106102.
pubmed: 35903014
pmcid: 9341356
doi: 10.1080/19490976.2022.2106102
Medina DA, Pedreros JP, Turiel D, Quezada N, Pimentel F, Escalona A, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. Peer J. 2017;5:e3443.
pubmed: 28649469
pmcid: 5480389
doi: 10.7717/peerj.3443
Murphy R, Tsai P, Jullig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.
pubmed: 27738970
doi: 10.1007/s11695-016-2399-2
Al Assal K, Prifti E, Belda E, Sala P, Clément K, Dao MC, et al. Gut microbiota profile of obese diabetic women submitted to Roux-en-Y gastric bypass and its association with food intake and postoperative diabetes remission. Nutrients. 2020;12(2):278.
pubmed: 31973130
pmcid: 7071117
doi: 10.3390/nu12020278
Chen G, Zhuang J, Cui Q, Jiang S, Tao W, Chen W, et al. Two bariatric surgical procedures differentially alter the intestinal microbiota in obesity patients. Obes Surg. 2020;30(6):2345–61.
pubmed: 32152837
doi: 10.1007/s11695-020-04494-4
Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.
pubmed: 23032991
doi: 10.1038/tpj.2012.43
Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010 Dec;59(12):3049–57.
pubmed: 20876719
pmcid: 2992765
doi: 10.2337/db10-0253
Sanmiguel CP, Jacobs J, Gupta A, Ju T, Stains J, Coveleskie K, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: preliminary findings in obese women undergoing bariatric surgery. Psychosom Med. 2017;79(8):880–7.
pubmed: 28570438
pmcid: 5628115
doi: 10.1097/PSY.0000000000000494
Tabasi M, Eybpoosh S, Siadat SD, Elyasinia F, Soroush A, Bouzari S. Modulation of the gut microbiota and serum biomarkers after laparoscopic sleeve gastrectomy: a 1-year follow-up study. Obes Surg. 2021;31(5):1949–56.
pubmed: 33409976
doi: 10.1007/s11695-020-05139-2
Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:806248.
pubmed: 25710027
pmcid: 4330959
doi: 10.1155/2015/806248
Kural A, Khan I, Seyit H, Caglar TR, Toklu P, Vural M. Changes in the gut microbiota of morbidly obese patients after laparoscopic sleeve gastrectomy. Future Microbiol. 2022;17:5–15.
pubmed: 34877878
doi: 10.2217/fmb-2021-0043
Arnoriaga-Rodríguez M, Fernández-Real JM. Microbiota impacts on chronic inflammation and metabolic syndrome-related cognitive dysfunction. Rev Endocr Metab Disord. 2019;20(4):473–80.
pubmed: 31884557
doi: 10.1007/s11154-019-09537-5
Shen N, Caixàs A, Ahlers M, Patel K, Gao Z, Dutia R, et al. Longitudinal changes of microbiome composition and microbial metabolomics after surgical weight loss in individuals with obesity. Surgery for obesity and related diseases : official journal of the American Society for Bariatric. Surgery. 2019;15(8):1367–73.
Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80(1):37–49.
pubmed: 32238208
doi: 10.1017/S0029665120006916
Morales-Marroquin E, Hanson B, Greathouse L, de la Cruz-Munoz N, Messiah SE. Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: a systematic review. Obes Rev. 2020;21(8):e13025.
pubmed: 32249534
doi: 10.1111/obr.13025
Koulas SG, Stefanou CK, Stefanou SK, Tepelenis K, Zikos N, Tepetes K, et al. Gut microbiota in patients with morbid obesity before and after bariatric surgery: a ten-year review study (2009-2019). Obes Surg. 2021;31(1):317–26.
pubmed: 33130944
doi: 10.1007/s11695-020-05074-2
Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 Cells. Cell. 2020;181(6):1263–75.e16.
pubmed: 32437658
pmcid: 7293577
doi: 10.1016/j.cell.2020.04.027
Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes. (Lond). 2013;37(2):216–23.
pubmed: 22410962
doi: 10.1038/ijo.2012.33
De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21.
pubmed: 26416813
doi: 10.1136/gutjnl-2015-309957
Bolte LA, Vich Vila A, Imhann F, Collij V, Gacesa R, Peters V, et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut. 2021;70(7):1287–98.
pubmed: 33811041
doi: 10.1136/gutjnl-2020-322670
Aslam H, Marx W, Rocks T, Loughman A, Chandrasekaran V, Ruusunen A, et al. The effects of dairy and dairy derivatives on the gut microbiota: a systematic literature review. Gut Microbes. 2020;12(1):1799533.
pubmed: 32835617
pmcid: 7524346
doi: 10.1080/19490976.2020.1799533
Ortega RM, Pérez-Rodrigo C, López-Sobaler AM. Dietary assessment methods: dietary records. Nutr Hosp. 2015;31(Suppl 3):38–45.
pubmed: 25719769
Yang YW, Chen MK, Yang BY, Huang XJ, Zhang XR, He LQ, et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Appl Environ Microbiol. 2015;81(19):6749–56.
pubmed: 26187967
pmcid: 4561689
doi: 10.1128/AEM.01906-15
Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol. 2008;47(5):367–73.
pubmed: 19146523
doi: 10.1111/j.1472-765X.2008.02408.x
Remely M, Tesar I, Hippe B, Gnauer S, Rust P, Haslberger AG. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef Microbes. 2015;6(4):431–9.
pubmed: 25609655
doi: 10.3920/BM2014.0104
Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol. 2004;97(6):1166–77.
pubmed: 15546407
doi: 10.1111/j.1365-2672.2004.02409.x
Kanno T, Matsuki T, Oka M, Utsunomiya H, Inada K, Magari H, et al. Gastric acid reduction leads to an alteration in lower intestinal microflora. Biochem Biophys Res Commun. 2009;381(4):666–70.
pubmed: 19248769
doi: 10.1016/j.bbrc.2009.02.109
Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS One. 2010;5(2):e9085.
pubmed: 20140211
pmcid: 2816710
doi: 10.1371/journal.pone.0009085