Limosilactobacillus reuteri as sustainable biological control agent against toxigenic Fusarium verticillioides.
Antifungal compounds
Biocontrol
Cyclic dipeptides
Fungicidal and fungistatic activity
Mass spectrometry analysis
Phenyllactic acid
Journal
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]
ISSN: 1678-4405
Titre abrégé: Braz J Microbiol
Pays: Brazil
ID NLM: 101095924
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
08
01
2023
accepted:
23
07
2023
pmc-release:
02
08
2024
medline:
11
9
2023
pubmed:
2
8
2023
entrez:
2
8
2023
Statut:
ppublish
Résumé
Corn contamination with Fusarium verticillioides (Sacc.) Nirenberg is a worldwide problem that affects yield and grain quality resulting in severe economic losses and implications for food safety. Control of F. verticillioides is a challenge, but lactic acid bacteria (LAB) has high potential as a biological control agent. In this study, the antifungal effect of Limosilactobacillus reuteri (formerly Lactobacillus reuteri) LR-92 against F. verticillioides 97L was investigated. Cell-free supernatant (CFS) from L. reuteri showed concentration-dependent fungicidal and fungistatic activity against F. verticillioides 97L. The antifungal compounds from CFS showed heat stability and pH dependence, and antifungal activity was not affected by treatment with proteolytic enzymes. High-performance liquid chromatography analysis indicated that L. reuteri LR-92 produces lactic and acetic acids. After liquid-liquid extraction, electrospray ionization mass spectrometry analysis of the active ethyl acetate fraction containing antifungal compounds revealed the production of 3-phenyllactic acid, cyclo-(L-Pro-L-Leu), cyclo-(L-Pro-L-Phe), and cyclo-(L-Phe-trans-4-OH-L-Pro). L. reuteri LR-92 has potential as a biocontrol agent for F. verticillioides and contributes to food safety.
Identifiants
pubmed: 37531006
doi: 10.1007/s42770-023-01081-4
pii: 10.1007/s42770-023-01081-4
pmc: PMC10484862
doi:
Substances chimiques
Antifungal Agents
0
Biological Control Agents
0
cyclo-(L-Pro-L-Phe)
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2219-2226Informations de copyright
© 2023. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.
Références
Rouf Shah T, Prasad K, Kumar P (2016) Maize—A potential source of human nutrition and health: A review. Cogent Food Agric 2(1):1166995. https://doi.org/10.1080/23311932.2016.1166995
Oliveira PM, Zannini E, Arendt EK (2014) Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiol 37:78–95. https://doi.org/10.1016/j.fm.2013.06.003
doi: 10.1016/j.fm.2013.06.003
pubmed: 24230476
Gong F, Yang L, Tai F, Hu X, Wang W (2014) Omics of maize stress response for sustainable food production: opportunities and challenges. Omi A J Integr Biol 18:714–732. https://doi.org/10.1089/omi.2014.0125
doi: 10.1089/omi.2014.0125
Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111. https://doi.org/10.1016/j.plantsci.2017.11.012
doi: 10.1016/j.plantsci.2017.11.012
pubmed: 29362088
Kharazian ZA, Salehi Jouzani G, Aghdasi M, Khorvash M, Zamani M, Mohammadzadeh H (2017) Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol Control 110:33–43. https://doi.org/10.1016/j.biocontrol.2017.04.004
doi: 10.1016/j.biocontrol.2017.04.004
Vendruscolo CP, Frias NC, de Carvalho CB, de Sá LRM, Belli CB, Baccarin RYA (2016) Leukoencephalomalacia outbreak in horses due to consumption of contaminated hay. J Vet Intern Med 30:1879–1881. https://doi.org/10.1111/jvim.14588
doi: 10.1111/jvim.14588
pubmed: 27744651
pmcid: 5115199
Khan RB, Phulukdaree A, Chuturgoon AA (2018) Fumonisin B
doi: 10.1016/j.toxicon.2017.12.041
pubmed: 29233736
Bryła M, Waśkiewicz A, Szymczyk K, Jędrzejczak R (2017) Effects of pH and temperature on the stability of fumonisins in maize products. Toxins 9:1–16. https://doi.org/10.3390/toxins9030088
doi: 10.3390/toxins9030088
Sun G, Wang S, Hu X et al (2007) Fumonisin B
doi: 10.1080/02652030601013471
pubmed: 17364919
Wang SK, Liu S, Yang LG, Shi RF, Sun GJ (2013) Effect of fumonisin B
doi: 10.3892/mmr.2013.1447
pubmed: 23625282
Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH, Rothman KJ, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Health Perspect 114:237–241. https://doi.org/10.1289/ehp.8221
doi: 10.1289/ehp.8221
pubmed: 16451860
Pósa R, Stoev S, Kovács M, Donkó T, Repa I, Magyar T (2016) A comparative pathological finding in pigs exposed to fumonisin B
doi: 10.1177/0748233714543735
pubmed: 25107460
Rauber RH, Oliveira MS, Mallmann AO, Dilkin P, Mallmann CA, Giacomini LZ, Nascimento VP (2013) Effects of fumonisin B
doi: 10.1590/S0100-736X2013000900006
Shehata MG, Badr AN, El Sohaimy SA, Asker D, Awad TS (2019) Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Ann Agric Sci 64:71–78. https://doi.org/10.1016/j.aoas.2019.05.002
doi: 10.1016/j.aoas.2019.05.002
Gupta KR, Maiti P, Jankowska M (2007) Global environment: problems and policies. Atlantic Publishers & Distributors, New Delhi
Alavanja MCR, Hofmann JN, Lynch CF et al (2014) Non-hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study. PLoS One 9:e109332. https://doi.org/10.1371/journal.pone.0109332
doi: 10.1371/journal.pone.0109332
pubmed: 25337994
pmcid: 4206281
FAOSTAT (2017) Pesticide use. Food and Agriculture Organization of the United Nations Statistics. http://www.fao.org/faostat/en/#data . Accessed 25 Jan 2020
Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E (2017) Antifungal microbial agents for food biopreservation - a review. Microorganisms 5:1–35. https://doi.org/10.3390/microorganisms5030037
doi: 10.3390/microorganisms5030037
Dal Bello F, Clarke CI, Ryan LAM et al (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318. https://doi.org/10.1016/j.jcs.2006.09.004
doi: 10.1016/j.jcs.2006.09.004
Plocková M, Stiles J, Chumchalová J, Halfarová R (2001) Control of mould growth by Lactobacillus rhamnosus VT1 and Lactobacillus reuteri CCM 3625 on milk agar plates. Czech J Food Sci 19:46–50. https://doi.org/10.17221/6574-cjfs
doi: 10.17221/6574-cjfs
Taylor M (ed) (2014) Handbook of natural antimicrobials for food safety and quality. Elsevier. https://doi.org/10.1016/C2013-0-16441-0
Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W (2019) Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: a comprehensive review. Compr Rev Food Sci Food Saf 18:1403–1436. https://doi.org/10.1111/1541-4337.12481
doi: 10.1111/1541-4337.12481
pubmed: 33336904
Gerez CL, Torres MJ, Font de Valdez G, Rollán G (2013) Control of spoilage fungi by lactic acid bacteria. Biol Control 64:231–237. https://doi.org/10.1016/j.biocontrol.2012.10.009
doi: 10.1016/j.biocontrol.2012.10.009
León Peláez AM, Serna Cataño CA, Quintero Yepes EA, Gamba Villarroel RR, De Antoni GL, Giannuzzi L (2012) Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control 24:177–183. https://doi.org/10.1016/j.foodcont.2011.09.024
doi: 10.1016/j.foodcont.2011.09.024
Larsen B, White S (1995) Antifungal effect of hydrogen peroxide on catalase-producing strains of Candida spp. Infect Dis Obstet Gynecol 3:73–78. https://doi.org/10.1155/S1064744995000354
doi: 10.1155/S1064744995000354
pubmed: 18476024
pmcid: 2364421
Le Lay C, Coton E, Le Blay G et al (2016) Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int J Food Microbiol 239:79–85. https://doi.org/10.1016/j.ijfoodmicro.2016.06.020
doi: 10.1016/j.ijfoodmicro.2016.06.020
pubmed: 27350657
Engels C, Schwab C, Zhang J et al (2016) Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci Rep 6. https://doi.org/10.1038/srep36246
Black BA, Zannini E, Curtis JM, Gänzle MG (2013) Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl Environ Microbiol 79:1866–1873. https://doi.org/10.1128/AEM.03784-12
doi: 10.1128/AEM.03784-12
pubmed: 23315734
pmcid: 3592247
Sjögren J, Magnusson J, Broberg A, Schnürer J, Kenne L (2003) Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 69:7554–7557. https://doi.org/10.1128/AEM.69.12.7554-7557.2003
doi: 10.1128/AEM.69.12.7554-7557.2003
pubmed: 14660414
pmcid: 309954
Axel C, Brosnan B, Zannini E, Peyer LC, Furey A, Coffey A, Arendt EK (2016) Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Appl Microbiol Biotechnol 100:1701–1711. https://doi.org/10.1007/s00253-015-7051-x
doi: 10.1007/s00253-015-7051-x
pubmed: 26481620
Belguesmia Y, Choiset Y, Rabesona H, Baudy-Floc’h M, Le Blay G, Haertlé T, Chobert JM (2013) Antifungal properties of durancins isolated from Enterococcus durans A5-11 and of its synthetic fragments. Lett Appl Microbiol 56:237–244. https://doi.org/10.1111/lam.12037
doi: 10.1111/lam.12037
pubmed: 23256522
Gupta R, Srivastava S (2014) Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol 42:1–7. https://doi.org/10.1016/j.fm.2014.02.005
doi: 10.1016/j.fm.2014.02.005
pubmed: 24929709
Ahmad Rather I, Seo BJ, Rejish Kumar VJ, Choi UH, Choi KH, Lim JH, Park YH (2013) Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Lett Appl Microbiol 57:69–76. https://doi.org/10.1111/lam.12077
doi: 10.1111/lam.12077
pubmed: 23565693
Deepthi BV, Rao KP, Chennapa G, Naik MK, Chandrashekara KT, Sreenivasa MY (2016) Antifungal attributes of Lactobacillus plantarum MYS6 against fumonisin producing Fusarium proliferatum associated with poultry feeds. PLoS ONE 11:e0155122. https://doi.org/10.1371/journal.pone.0155122
doi: 10.1371/journal.pone.0155122
pubmed: 27285317
pmcid: 4902316
Muhialdin BJ, Hassan Z, Abu Bakar F, Algboory HL, Saari N (2015) Novel antifungal peptides produced by Leuconostoc mesenteroides DU15 effectively inhibit growth of Aspergillus niger. J Food Sci 80:M1026–M1030. https://doi.org/10.1111/1750-3841.12844
doi: 10.1111/1750-3841.12844
pubmed: 25847317
Sangmanee P, Hongpattarakere T (2014) Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Control 40:224–233. https://doi.org/10.1016/j.foodcont.2013.12.005
doi: 10.1016/j.foodcont.2013.12.005
Vimont A, Fernandez B, Ahmed G, Fortin HP, Fliss I (2019) Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt. Int J Food Microbiol 289:182–188. https://doi.org/10.1016/j.ijfoodmicro.2018.09.005
doi: 10.1016/j.ijfoodmicro.2018.09.005
pubmed: 30253311
Jørgensen MR, Kragelund C, Jensen PØ, Keller MK, Twetman S (2017) Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. J Oral Microbiol 9:1274582. https://doi.org/10.1080/20002297.2016.1274582
doi: 10.1080/20002297.2016.1274582
pubmed: 28326154
pmcid: 5328390
Ortiz-Rivera Y, Sánchez-Vega R, Gutiérrez-Méndez N, León-Félix J, Acosta-Muñiz C, Sepulveda DR (2017) Production of reuterin in a fermented milk product by Lactobacillus reuteri: inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria. J Dairy Sci 100:4258–4268. https://doi.org/10.3168/jds.2016-11534
doi: 10.3168/jds.2016-11534
pubmed: 28342608
Hirozawa MT, Ono MA, Garcia S, Bordini JG, Oliveira AJ, Hirooka EY, Ono EYS (2022) Effect of lactic acid bacteria on Fusarium verticillioides growth and fumonisin B
doi: 10.22533/at.ed.41722170114
Poornachandra Rao K, Deepthi BV, Rakesh S, Ganesh T, Achar P, Sreenivasa MY (2019) Antiaflatoxigenic potential of cell-free supernatant from Lactobacillus plantarum MYS44 against Aspergillus parasiticus. Probiotics Antimicrob 11:55–64. https://doi.org/10.1007/s12602-017-9338-y
Grover RK, Moore JD (1962) Toximetric studies of fungicides against brown rot organisms, Sclerotinia fructicola and S. laxa. Phytopathology 52(9):876–879
Miao J, Guo H, Ou Y et al (2014) Purification and characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp. tolerans FX-6 from Tibetan kefir, a traditional fermented milk from Tibet. China. Food Control 42:48–53. https://doi.org/10.1016/j.foodcont.2014.01.041
doi: 10.1016/j.foodcont.2014.01.041
Wang HK, Yan YH, Wang JM, Zhang HP, Qi W (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS One 7:1–7. https://doi.org/10.1371/journal.pone.0029452
doi: 10.1371/journal.pone.0029452
De Carvalho AA, Mantovani HC, Paiva AD, De Melo MR (2009) The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5. J Appl Microbiol 107:339–347. https://doi.org/10.1111/j.1365-2672.2009.04212.x
doi: 10.1111/j.1365-2672.2009.04212.x
pubmed: 19320950
Mass Bank (2020) Mass spectral database of the mass spectrometry society of Japan. http://www.massbank.jp . Accessed 20 Jan 2020
ChEBI - Chemical Entities of Biological Interest. (2018) - EMBL’s European Bioinformatics Institute. https://www.ebi.ac.uk . Accessed 20 Jan 2020
Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156:1589–1599
doi: 10.1099/mic.0.035642-0
pubmed: 20150236
pmcid: 7336520
Baffoni L, Gaggia F, Dalanaj N, Prodi A, Nipoti P, Pisi A, Biavati B, Di Gioia D (2015) Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat. BMC Microbiol:15. https://doi.org/10.1186/s12866-015-0573-7
Zalán Z, Hudáček J, Štětina J, Chumchalová J, Halász A (2010) Production of organic acids by Lactobacillus strains in three different media. Eur Food Res 230:395–404. https://doi.org/10.1007/s00217-009-1179-9
doi: 10.1007/s00217-009-1179-9
Legiša M, Golič Grdadolnik S (2002) Influence of dissolved oxygen concentration on intracellular pH and consequently on growth rate of Aspergillus niger. Food Technol Biotechnol 40:27–32
Stratford M, Nebe-von-Caron G, Steels H, Novodvorska M, Ueckert J, Archer DB (2013) Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int J Food Microbiol 161:164–171. https://doi.org/10.1016/j.ijfoodmicro.2012.12.013
doi: 10.1016/j.ijfoodmicro.2012.12.013
pubmed: 23334094
Brul S, Coote P (1999) Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17. https://doi.org/10.1016/S0168-1605(99)00072-0
doi: 10.1016/S0168-1605(99)00072-0
pubmed: 10488839
Cortés-Zavaleta O, López-Malo A, Hernández-Mendoza A, García HS (2014) Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int J Food Microbiol 173:30–35. https://doi.org/10.1016/j.ijfoodmicro.2013.12.016
doi: 10.1016/j.ijfoodmicro.2013.12.016
pubmed: 24412414
Lv X, Ma H, Lin Y, Bai F, Ge Y, Zhang D, Li J (2018) Antifungal activity of Lactobacillus plantarum C10 against Trichothecium roseum and its application in promotion of defense responses in muskmelon (Cucumis melo L.). J Food Sci Technol 55:3703–3711. https://doi.org/10.1007/s13197-018-3300-1
doi: 10.1007/s13197-018-3300-1
pubmed: 30150830
pmcid: 6098762
Mieszkin S, Hymery N, Debaets S, Coton E, Le Blay G, Valence F, Mounier J (2017) Action mechanisms involved in the bioprotective effect of Lactobacillus harbinensis K.V9.3.1.Np against Yarrowia lipolytica in fermented milk. Int J Food Microbiol 248:47–55. https://doi.org/10.1016/j.ijfoodmicro.2017.02.013
doi: 10.1016/j.ijfoodmicro.2017.02.013
pubmed: 28244372
Yoo JA, Lim YM, Yoon MH (2016) Production and antifungal effect of 3-phenyllactic acid (PLA) by lactic acid bacteria. J Appl Biol Chem 59:173–178. https://doi.org/10.3839/jabc.2016.032
doi: 10.3839/jabc.2016.032
Zhang H, Cai Y (2014) Lactic acid bacteria: fundamentals and practice. Springer, Netherlands
doi: 10.1007/978-94-017-8841-0
Ström K, Sjögren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68:4322–4327. https://doi.org/10.1128/AEM.68.9.4322-4327.2002
doi: 10.1128/AEM.68.9.4322-4327.2002
pubmed: 12200282
pmcid: 124062
Li H, Liu L, Zhang S, Cui W, Lv J (2012) Identification of antifungal compounds produced by Lactobacillus casei AST18. Curr Microbiol 65(2):156–161. https://doi.org/10.1007/s00284-012-0135-2
doi: 10.1007/s00284-012-0135-2
pubmed: 22580887
Kwak MK, Liu R, Kang SO (2018) Antimicrobial activity of cyclic dipeptides produced by Lactobacillus plantarum LBP-K10 against multidrug-resistant bacteria, pathogenic fungi, and influenza A virus. Food Control 85:223–234. https://doi.org/10.1016/j.foodcont.2017.10.001
doi: 10.1016/j.foodcont.2017.10.001
Mauro CSI, Garcia S (2019) Coconut milk beverage fermented by Lactobacillus reuteri: optimization process and stability during refrigerated storage. J Food Sci Technol 56:854–864. https://doi.org/10.1007/s13197-018-3545-8
doi: 10.1007/s13197-018-3545-8
pubmed: 30906043
pmcid: 6400744
López-Malo A, Palou E, Parish ME, Davidson PM (2005) Methods for activity assay and evaluation of results. In: Davidson PM, Sofos JN, Branen AL (eds) Antimicrobials in Foods. Marcel Dekker, New York, pp 659–668