Arula-7 powder improves diarrhea and intestinal epithelial tight junction function associated with its regulation of intestinal flora in calves infected with pathogenic Escherichia coli O


Journal

Microbiome
ISSN: 2049-2618
Titre abrégé: Microbiome
Pays: England
ID NLM: 101615147

Informations de publication

Date de publication:
05 08 2023
Historique:
received: 09 04 2022
accepted: 07 07 2023
medline: 7 8 2023
pubmed: 5 8 2023
entrez: 4 8 2023
Statut: epublish

Résumé

The effects of Arula-7 powder (ASP) on diarrhea and intestinal barrier function associated with its regulation of intestinal microflora in calves infected with pathogenic Escherichia coli O Twenty Holstein calves were randomly divided into four treatment groups: normal control (NC), model control (MC), 0.5 mg/kg ciprofloxacin (CIP) and 2.50 g/kg ASP groups. ASP inhibited the relative abundance of Proteobacteria, Selenomonadales, and Enterobacteriales, and increased the relative abundance of Lactobacillus, Faecalibacterium, and Alloprevotella. Moreover, we demonstrated for the first time that the ASP and CIP promoted weight gain, reduced the diarrhea rate (P < 0.05), and enhanced antioxidant capacity (P < 0.05) due to the increase in average daily gain (ADG), total protein (TP), and albumin (ALB). In addition, ASP and CIP increased the expression of Zunola occludens-1 (ZO-1), Occludin, and Claudin-1 in the ileum (P < 0.05), and improved immunity due to increase levels of interleukin-2 (IL-2), interleukin-4 (IL-4), interferon-γ (IFN-γ), immunoglobulin A (IgA), and immunoglobulin G (IgG) in the serum, strengthened CD4 Hence, The intestinal microbiota environment formed by early intervention of ASP powder has a protective effect on the intestinal mucosal function of calves infected with pathogenic E. coli. Video Abstract.

Sections du résumé

BACKGROUND
The effects of Arula-7 powder (ASP) on diarrhea and intestinal barrier function associated with its regulation of intestinal microflora in calves infected with pathogenic Escherichia coli O
METHOD
Twenty Holstein calves were randomly divided into four treatment groups: normal control (NC), model control (MC), 0.5 mg/kg ciprofloxacin (CIP) and 2.50 g/kg ASP groups.
RESULTS
ASP inhibited the relative abundance of Proteobacteria, Selenomonadales, and Enterobacteriales, and increased the relative abundance of Lactobacillus, Faecalibacterium, and Alloprevotella. Moreover, we demonstrated for the first time that the ASP and CIP promoted weight gain, reduced the diarrhea rate (P < 0.05), and enhanced antioxidant capacity (P < 0.05) due to the increase in average daily gain (ADG), total protein (TP), and albumin (ALB). In addition, ASP and CIP increased the expression of Zunola occludens-1 (ZO-1), Occludin, and Claudin-1 in the ileum (P < 0.05), and improved immunity due to increase levels of interleukin-2 (IL-2), interleukin-4 (IL-4), interferon-γ (IFN-γ), immunoglobulin A (IgA), and immunoglobulin G (IgG) in the serum, strengthened CD4
CONCLUSION
Hence, The intestinal microbiota environment formed by early intervention of ASP powder has a protective effect on the intestinal mucosal function of calves infected with pathogenic E. coli. Video Abstract.

Identifiants

pubmed: 37542271
doi: 10.1186/s40168-023-01616-9
pii: 10.1186/s40168-023-01616-9
pmc: PMC10403850
doi:

Substances chimiques

Powders 0

Types de publication

Video-Audio Media Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

172

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

J Anim Sci Biotechnol. 2020 Mar 02;11:12
pubmed: 32140225
PLoS One. 2018 Jan 26;13(1):e0191599
pubmed: 29373601
Immunity. 2016 Mar 15;44(3):647-658
pubmed: 26944199
Appl Environ Microbiol. 2018 May 31;84(12):
pubmed: 29625984
Microb Pathog. 2018 Jun;119:65-71
pubmed: 29649517
Microb Pathog. 2018 Apr;117:162-169
pubmed: 29474827
Am J Physiol Gastrointest Liver Physiol. 2011 Jun;300(6):G1054-64
pubmed: 21415414
Curr Protoc Bioinformatics. 2011 Dec;Chapter 10:10.7.1-10.7.20
pubmed: 22161565
J Anim Sci Biotechnol. 2015 Apr 09;6(1):14
pubmed: 25954504
Medicine (Baltimore). 2016 Apr;95(15):e3342
pubmed: 27082589
Antioxid Redox Signal. 2012 Nov 15;17(10):1433-40
pubmed: 22607129
Oncotarget. 2017 Jul 25;8(30):48863-48874
pubmed: 28415628
Vet Res. 2019 Feb 4;50(1):8
pubmed: 30717800
Front Pharmacol. 2018 Feb 13;9:75
pubmed: 29487524
J Anim Sci. 2013 Dec;91(12):5614-25
pubmed: 24126267
Science. 2011 Jan 28;331(6016):463-7
pubmed: 21273488
Microbiome. 2019 Aug 31;7(1):126
pubmed: 31472697
Immunol Rev. 2017 Sep;279(1):63-69
pubmed: 28856735
ISME J. 2012 Aug;6(8):1621-4
pubmed: 22402401
Sci Rep. 2015 Mar 20;5:9342
pubmed: 25791609
Microb Pathog. 2019 Sep;134:103557
pubmed: 31153984
PLoS One. 2012;7(7):e40666
pubmed: 22848393
mSphere. 2016 May 25;1(3):
pubmed: 27303742
Med Res Rev. 2017 Sep;37(5):1140-1185
pubmed: 28052344
Cell Immunol. 2010;264(1):18-22
pubmed: 20620256
PeerJ. 2017 Nov 27;5:e4100
pubmed: 29201570
Fish Shellfish Immunol. 2013 Aug;35(2):572-80
pubmed: 23742869
Nature. 2009 Jan 22;457(7228):480-4
pubmed: 19043404
Vet Clin North Am Food Anim Pract. 2009 Mar;25(1):73-99, vi
pubmed: 19174284
Cell Microbiol. 2004 Aug;6(8):783-93
pubmed: 15236645
Res Vet Sci. 2019 Aug;125:390-396
pubmed: 31412308
Cell Host Microbe. 2016 Aug 10;20(2):202-14
pubmed: 27476413
J Immunol. 2006 Sep 1;177(5):2775-83
pubmed: 16920912
Animals (Basel). 2022 Apr 29;12(9):
pubmed: 35565573
Gut Pathog. 2009 Nov 23;1(1):19
pubmed: 19930635
Semin Cell Dev Biol. 2014 Dec;36:157-65
pubmed: 25171873
Gut. 2018 Jan;67(1):108-119
pubmed: 27802154
Molecules. 2019 Mar 28;24(7):
pubmed: 30925757
Nature. 2015 Jan 8;517(7533):205-8
pubmed: 25337874
PLoS Biol. 2020 Apr 20;18(4):e3000465
pubmed: 32310938
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
J Biol Chem. 2000 Feb 25;275(8):5773-8
pubmed: 10681565
Biomed Pharmacother. 2018 Jun;102:1025-1036
pubmed: 29710519
Curr Opin Immunol. 2013 Aug;25(4):450-5
pubmed: 23830047
J Immunol. 1999 Oct 15;163(8):4125-32
pubmed: 10510347
J Clin Invest. 2003 Oct;112(7):1037-48
pubmed: 14523041

Auteurs

Hao Chen (H)

College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.

Zhifeng Jia (Z)

College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
Animal Disease Prevention and Control Center of Bazhou District, Bazhong, China.

Meiling He (M)

College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.

Aorigele Chen (A)

College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.

Xin Zhang (X)

College of Basic Medical, Inner Mongolia Medical University, Hohhot, 010110, People's Republic of China.

Jin Xu (J)

Henan Houyi Bio-Engineering, Inc, He Nan, 451161, Zhengzhou, People's Republic of China.

Chunjie Wang (C)

College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China. chunjiewang200@sohu.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH