Gene expression genetics of the striatum of Diversity Outbred mice.
Journal
Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192
Informations de publication
Date de publication:
05 08 2023
05 08 2023
Historique:
received:
15
05
2023
accepted:
28
07
2023
medline:
7
8
2023
pubmed:
6
8
2023
entrez:
5
8
2023
Statut:
epublish
Résumé
Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.
Identifiants
pubmed: 37543624
doi: 10.1038/s41597-023-02426-2
pii: 10.1038/s41597-023-02426-2
pmc: PMC10404230
doi:
Types de publication
Dataset
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
522Subventions
Organisme : NCI NIH HHS
ID : P30 CA034196
Pays : United States
Organisme : NIDA NIH HHS
ID : P50 DA039841
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA037927
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA043809
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2023. Springer Nature Limited.
Références
Reynolds, T. et al. Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration. Neuropsychopharmacology 46, 86–97, https://doi.org/10.1038/s41386-020-00795-5 (2021).
doi: 10.1038/s41386-020-00795-5
pubmed: 32791514
Walker, D. M. et al. Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain’s Reward Circuitry. Biol Psychiatry 84, 867–880, https://doi.org/10.1016/j.biopsych.2018.04.009 (2018).
doi: 10.1016/j.biopsych.2018.04.009
pubmed: 29861096
pmcid: 6202276
Huggett, S. B. et al. Genes identified in rodent studies of alcohol intake are enriched for heritability of human substance use. Alcohol Clin Exp Res https://doi.org/10.1111/acer.14738 (2021).
doi: 10.1111/acer.14738
pubmed: 34751961
pmcid: 9714312
Ribeiro, E. A. et al. Gene Network Dysregulation in Dorsolateral Prefrontal Cortex Neurons of Humans with Cocaine Use Disorder. Sci Rep 7, 5412, https://doi.org/10.1038/s41598-017-05720-3 (2017).
doi: 10.1038/s41598-017-05720-3
pubmed: 28710498
pmcid: 5511210
Huggett, S. B. & Stallings, M. C. Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction. J Neurosci 40, 5300–5313, https://doi.org/10.1523/JNEUROSCI.2879-19.2020 (2020).
doi: 10.1523/JNEUROSCI.2879-19.2020
pubmed: 32457073
pmcid: 7329314
Jupp, B. & Dalley, J. W. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol 171, 4729–4766, https://doi.org/10.1111/bph.12787 (2014).
doi: 10.1111/bph.12787
pubmed: 24866553
pmcid: 4209940
Jentsch, J. D. & Taylor, J. R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl) 146, 373–390, https://doi.org/10.1007/pl00005483 (1999).
doi: 10.1007/pl00005483
pubmed: 10550488
Meyer, P. J., King, C. P. & Ferrario, C. R. Motivational Processes Underlying Substance Abuse Disorder. Curr Top Behav Neurosci 27, 473–506, https://doi.org/10.1007/7854_2015_391 (2016).
doi: 10.1007/7854_2015_391
pubmed: 26475159
pmcid: 4851611
Kalivas, P. W., Pierce, R. C., Cornish, J. & Sorg, B. A. A role for sensitization in craving and relapse in cocaine addiction. J Psychopharmacol 12, 49–53, https://doi.org/10.1177/026988119801200107 (1998).
doi: 10.1177/026988119801200107
pubmed: 9584968
Wolf, M. E. The Bermuda Triangle of cocaine-induced neuroadaptations. Trends Neurosci 33, 391–398, https://doi.org/10.1016/j.tins.2010.06.003 (2010).
doi: 10.1016/j.tins.2010.06.003
pubmed: 20655604
pmcid: 2935206
Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature neuroscience 8, 1481–1489, https://doi.org/10.1038/nn1579 (2005).
doi: 10.1038/nn1579
pubmed: 16251991
Belin, D. & Everitt, B. J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441, https://doi.org/10.1016/j.neuron.2007.12.019 (2008).
doi: 10.1016/j.neuron.2007.12.019
pubmed: 18255035
Lind, N. M. et al. Behavioral response to novelty correlates with dopamine receptor availability in striatum of Gottingen minipigs. Behavioural brain research 164, 172–177, https://doi.org/10.1016/j.bbr.2005.06.008 (2005).
doi: 10.1016/j.bbr.2005.06.008
pubmed: 16043240
Wittmann, B. C., Daw, N. D., Seymour, B. & Dolan, R. J. Striatal activity underlies novelty-based choice in humans. Neuron 58, 967–973, https://doi.org/10.1016/j.neuron.2008.04.027 (2008).
doi: 10.1016/j.neuron.2008.04.027
pubmed: 18579085
pmcid: 2535823
Hooks, M. S. et al. Individual locomotor response to novelty predicts selective alterations in D1 and D2 receptors and mRNAs. J Neurosci 14, 6144–6152 (1994).
doi: 10.1523/JNEUROSCI.14-10-06144.1994
pubmed: 7931568
pmcid: 6576994
Gjedde, A., Kumakura, Y., Cumming, P., Linnet, J. & Moller, A. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proceedings of the National Academy of Sciences of the United States of America 107, 3870–3875, https://doi.org/10.1073/pnas.0912319107 (2010).
doi: 10.1073/pnas.0912319107
pubmed: 20133675
pmcid: 2840468
Cooper, S., Robison, A. J. & Mazei-Robison, M. S. Reward Circuitry in Addiction. Neurotherapeutics 14, 687–697, https://doi.org/10.1007/s13311-017-0525-z (2017).
doi: 10.1007/s13311-017-0525-z
pubmed: 28324454
pmcid: 5509624
Nielsen, G. [We are not proud enough]. Sygeplejersken 90, 18–20 (1990).
pubmed: 2343406
Luscher, C. The Emergence of a Circuit Model for Addiction. Annu Rev Neurosci 39, 257–276, https://doi.org/10.1146/annurev-neuro-070815-013920 (2016).
doi: 10.1146/annurev-neuro-070815-013920
pubmed: 27145911
James, M. H. Mimicking Human Drug Consumption Patterns in Rat Engages Corticostriatal Circuitry. Neuroscience 442, 311–313, https://doi.org/10.1016/j.neuroscience.2020.06.012 (2020).
doi: 10.1016/j.neuroscience.2020.06.012
pubmed: 32682655
Sadri-Vakili, G. Cocaine triggers epigenetic alterations in the corticostriatal circuit. Brain Res 1628, 50–59, https://doi.org/10.1016/j.brainres.2014.09.069 (2015).
doi: 10.1016/j.brainres.2014.09.069
pubmed: 25301690
Bobadilla, A. C. et al. Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior. Prog Brain Res 235, 93–112, https://doi.org/10.1016/bs.pbr.2017.07.013 (2017).
doi: 10.1016/bs.pbr.2017.07.013
pubmed: 29054293
pmcid: 5794216
Wall, N. R. et al. Complementary Genetic Targeting and Monosynaptic Input Mapping Reveal Recruitment and Refinement of Distributed Corticostriatal Ensembles by Cocaine. Neuron 104, 916–930 e915, https://doi.org/10.1016/j.neuron.2019.10.032 (2019).
doi: 10.1016/j.neuron.2019.10.032
pubmed: 31759807
pmcid: 6941653
Chesler, E. J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37, 233–242, https://doi.org/10.1038/ng1518 (2005).
doi: 10.1038/ng1518
pubmed: 15711545
Munro, D. et al. The regulatory landscape of multiple brain regions in outbred heterogeneous stock rats. Nucleic Acids Res 50, 10882–10895, https://doi.org/10.1093/nar/gkac912 (2022).
doi: 10.1093/nar/gkac912
pubmed: 36263809
pmcid: 9638908
Bubier, J. A. et al. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol. Front Behav Neurosci 10, 1, https://doi.org/10.3389/fnbeh.2016.00001 (2016).
doi: 10.3389/fnbeh.2016.00001
pubmed: 26834590
pmcid: 4720795
Bubier, J. A. et al. Identification of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision. genetics. Genetics 197, 1377–1393, https://doi.org/10.1534/genetics.114.166165 (2014).
doi: 10.1534/genetics.114.166165
pubmed: 24923803
Svenson, K. L. et al. High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 190(2), 437–447, https://doi.org/10.1534/genetics.111.132597 (2012).
Chesler, E. J. Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse populations in behavioral genetics research. Mamm Genome 25, 3–11, https://doi.org/10.1007/s00335-013-9492-9 (2014).
doi: 10.1007/s00335-013-9492-9
pubmed: 24272351
Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The Diversity Outbred mouse population. Mamm Genome 23, 713–718, https://doi.org/10.1007/s00335-012-9414-2 (2012).
doi: 10.1007/s00335-012-9414-2
pubmed: 22892839
pmcid: 3524832
Chesler, E. J. et al. The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome 19, 382–389, https://doi.org/10.1007/s00335-008-9135-8 (2008).
doi: 10.1007/s00335-008-9135-8
pubmed: 18716833
pmcid: 2745091
Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36, 1133–1137, https://doi.org/10.1038/ng1104-1133 (2004).
Ferraj, A. et al. Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. bioRxiv, https://doi.org/10.1101/2022.09.26.509577 (2022).
Threadgill, D. W. & Churchill, G. A. Ten years of the Collaborative Cross. Genetics 190, 291–294, https://doi.org/10.1534/genetics.111.138032 (2012).
doi: 10.1534/genetics.111.138032
pubmed: 22345604
pmcid: 3276648
Logan, R. W. et al. High-precision genetic mapping of behavioral traits in the diversity outbred mouse population. Genes Brain Behav 12, 424–437, https://doi.org/10.1111/gbb.12029 (2013).
doi: 10.1111/gbb.12029
pubmed: 23433259
Philip, V. M. et al. Genetic analysis in the Collaborative Cross breeding population. Genome Res 21, 1223–1238, https://doi.org/10.1101/gr.113886.110 (2011).
Chick, J. M. et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature 534, 500–505, https://doi.org/10.1038/nature18270 (2016).
doi: 10.1038/nature18270
pubmed: 27309819
pmcid: 5292866
Skelly, D. A. et al. Mapping the Effects of Genetic Variation on Chromatin State and Gene Expression Reveals Loci That Control Ground State Pluripotency. Cell Stem Cell 27, 459–469 e458, https://doi.org/10.1016/j.stem.2020.07.005 (2020).
doi: 10.1016/j.stem.2020.07.005
pubmed: 32795400
pmcid: 7484384
Keele, G. R. et al. Regulation of protein abundance in genetically diverse mouse populations. Cell Genom 1 https://doi.org/10.1016/j.xgen.2021.100003 (2021).
Recla, J. M. et al. Precise genetic mapping and integrative bioinformatics in Diversity Outbred mice reveals Hydin as a novel pain gene. Mamm Genome https://doi.org/10.1007/s00335-014-9508-0 (2014).
Palmer, R. H. C. et al. Multi-omic and multi-species meta-analyses of nicotine consumption. Transl Psychiatry 11, 98, https://doi.org/10.1038/s41398-021-01231-y (2021).
doi: 10.1038/s41398-021-01231-y
pubmed: 33542196
pmcid: 7862377
Huggett, S. B., Bubier, J. A., Chesler, E. J. & Palmer, R. H. C. Do gene expression findings from mouse models of cocaine use recapitulate human cocaine use disorder in reward circuitry? Genes Brain Behav 20, e12689, https://doi.org/10.1111/gbb.12689 (2021).
doi: 10.1111/gbb.12689
pubmed: 32720468
Palmer, R. H. C. et al. Integration of evidence across human and model organism studies: A meeting report. Genes Brain Behav, e12738. https://doi.org/10.1111/gbb.12738 (2021).
Binh Tran, T. D. et al. Microbial glutamate metabolism predicts intravenous cocaine self-administration in diversity outbred mice. Neuropharmacology 226, 109409, https://doi.org/10.1016/j.neuropharm.2022.109409 (2023).
doi: 10.1016/j.neuropharm.2022.109409
pubmed: 36592885
Chesler, E. J. et al. Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection. G3 (Bethesda) 6, 3893–3902, https://doi.org/10.1534/g3.116.035527 (2016).
doi: 10.1534/g3.116.035527
pubmed: 27694113
pmcid: 5144960
Sathyanesan, M. et al. A molecular characterization of the choroid plexus and stress-induced gene regulation. Transl Psychiatry 2, e139, https://doi.org/10.1038/tp.2012.64 (2012).
doi: 10.1038/tp.2012.64
pubmed: 22781172
pmcid: 3410626
Morgan, A. P. et al. The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3 (Bethesda) 6, 263–279, https://doi.org/10.1534/g3.115.022087 (2015).
doi: 10.1534/g3.115.022087
pubmed: 26684931
pmcid: 4751547
Broman, K. W., Gatti, D. M., Svenson, K. L., Sen, S. & Churchill, G. A. Cleaning Genotype Data from Diversity Outbred Mice. G3 (Bethesda) 9, 1571–1579, https://doi.org/10.1534/g3.119.400165 (2019).
doi: 10.1534/g3.119.400165
pubmed: 30877082
Broman, K. W. et al. R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations. Genetics 211, 495–502, https://doi.org/10.1534/genetics.118.301595 (2019).
doi: 10.1534/genetics.118.301595
pubmed: 30591514
pmcid: 6366910
Choi, K. et al. Genotype-free individual genome reconstruction of Multiparental Population Models by RNA sequencing data. bioRxiv, https://doi.org/10.1101/2020.10.11.335323 (2020).
Gatti, D. M. et al. Quantitative trait locus mapping methods for diversity outbred mice. G3 (Bethesda) 4, 1623–1633, https://doi.org/10.1534/g3.114.013748 (2014).
doi: 10.1534/g3.114.013748
pubmed: 25237114
Cornes, B. K. et al. Protein coding variation in the J:ARC and J:DO outbred laboratory mouse stocks provides a molecular basis for distinct research applications. G3 (Bethesda) 13. https://doi.org/10.1093/g3journal/jkad015 (2023).
Churchill, G. A. Data Structures in QTL Viewer https://github.com/churchill-lab/qtl-viewer/blob/master/docs/QTLViewerDataStructures.md (2017).
Vincent, M. et al. QTLViewer: an interactive webtool for genetic analysis in the Collaborative Cross and Diversity Outbred mouse populations. G3 (Bethesda) 12. https://doi.org/10.1093/g3journal/jkac146 (2022).
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559, https://doi.org/10.1186/1471-2105-9-559 (2008).
doi: 10.1186/1471-2105-9-559
pubmed: 19114008
pmcid: 2631488
Chesler, E. J. & Langston, M. A. in Proceedings of the 2005 joint annual satellite conference on Systems biology and regulatory genomics 150–165 (Springer-Verlag, San Diego, CA, USA, 2005).
Baker, E., Bubier, J. A., Reynolds, T., Langston, M. A. & Chesler, E. J. GeneWeaver: data driven alignment of cross-species genomics in biology and disease. Nucleic Acids Res 44, D555–559, https://doi.org/10.1093/nar/gkv1329 (2016).
doi: 10.1093/nar/gkv1329
pubmed: 26656951
Philip, V. & Chesler, E. Gene expression genetics of the striatum of Diversity Outbred mice. NCBI Gene Expression Omnibus https://identifiers.org/geo/GSE162732 (2023).
Chesler, E. J. Diversity Informatics Platform https://divdb.jax.org (2023).
Chesler, E. et al. Behavioral phenotypes on cocaine self-administration, acute drug response, impulsivity, reward seeking, and circadian dysregulation in Collaborative Cross strains of mice, Diversity Outbred mice, and their 8 founder inbred strains. Mouse Phenome Database https://phenome.jax.org/projects/CSNA03 (2023).
Skelly, D. A., Raghupathy, N., Robledo, R. F., Graber, J. H. & Chesler, E. J. Reference Trait Analysis Reveals Correlations Between Gene Expression and Quantitative Traits in Disjoint Samples. Genetics 212, 919–929, https://doi.org/10.1534/genetics.118.301865 (2019).
doi: 10.1534/genetics.118.301865
pubmed: 31113812
pmcid: 6614885