Gene expression genetics of the striatum of Diversity Outbred mice.


Journal

Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192

Informations de publication

Date de publication:
05 08 2023
Historique:
received: 15 05 2023
accepted: 28 07 2023
medline: 7 8 2023
pubmed: 6 8 2023
entrez: 5 8 2023
Statut: epublish

Résumé

Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.

Identifiants

pubmed: 37543624
doi: 10.1038/s41597-023-02426-2
pii: 10.1038/s41597-023-02426-2
pmc: PMC10404230
doi:

Types de publication

Dataset Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

522

Subventions

Organisme : NCI NIH HHS
ID : P30 CA034196
Pays : United States
Organisme : NIDA NIH HHS
ID : P50 DA039841
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA037927
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA043809
Pays : United States

Commentaires et corrections

Type : UpdateOf

Informations de copyright

© 2023. Springer Nature Limited.

Références

Reynolds, T. et al. Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration. Neuropsychopharmacology 46, 86–97, https://doi.org/10.1038/s41386-020-00795-5 (2021).
doi: 10.1038/s41386-020-00795-5 pubmed: 32791514
Walker, D. M. et al. Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain’s Reward Circuitry. Biol Psychiatry 84, 867–880, https://doi.org/10.1016/j.biopsych.2018.04.009 (2018).
doi: 10.1016/j.biopsych.2018.04.009 pubmed: 29861096 pmcid: 6202276
Huggett, S. B. et al. Genes identified in rodent studies of alcohol intake are enriched for heritability of human substance use. Alcohol Clin Exp Res https://doi.org/10.1111/acer.14738 (2021).
doi: 10.1111/acer.14738 pubmed: 34751961 pmcid: 9714312
Ribeiro, E. A. et al. Gene Network Dysregulation in Dorsolateral Prefrontal Cortex Neurons of Humans with Cocaine Use Disorder. Sci Rep 7, 5412, https://doi.org/10.1038/s41598-017-05720-3 (2017).
doi: 10.1038/s41598-017-05720-3 pubmed: 28710498 pmcid: 5511210
Huggett, S. B. & Stallings, M. C. Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction. J Neurosci 40, 5300–5313, https://doi.org/10.1523/JNEUROSCI.2879-19.2020 (2020).
doi: 10.1523/JNEUROSCI.2879-19.2020 pubmed: 32457073 pmcid: 7329314
Jupp, B. & Dalley, J. W. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol 171, 4729–4766, https://doi.org/10.1111/bph.12787 (2014).
doi: 10.1111/bph.12787 pubmed: 24866553 pmcid: 4209940
Jentsch, J. D. & Taylor, J. R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl) 146, 373–390, https://doi.org/10.1007/pl00005483 (1999).
doi: 10.1007/pl00005483 pubmed: 10550488
Meyer, P. J., King, C. P. & Ferrario, C. R. Motivational Processes Underlying Substance Abuse Disorder. Curr Top Behav Neurosci 27, 473–506, https://doi.org/10.1007/7854_2015_391 (2016).
doi: 10.1007/7854_2015_391 pubmed: 26475159 pmcid: 4851611
Kalivas, P. W., Pierce, R. C., Cornish, J. & Sorg, B. A. A role for sensitization in craving and relapse in cocaine addiction. J Psychopharmacol 12, 49–53, https://doi.org/10.1177/026988119801200107 (1998).
doi: 10.1177/026988119801200107 pubmed: 9584968
Wolf, M. E. The Bermuda Triangle of cocaine-induced neuroadaptations. Trends Neurosci 33, 391–398, https://doi.org/10.1016/j.tins.2010.06.003 (2010).
doi: 10.1016/j.tins.2010.06.003 pubmed: 20655604 pmcid: 2935206
Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature neuroscience 8, 1481–1489, https://doi.org/10.1038/nn1579 (2005).
doi: 10.1038/nn1579 pubmed: 16251991
Belin, D. & Everitt, B. J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441, https://doi.org/10.1016/j.neuron.2007.12.019 (2008).
doi: 10.1016/j.neuron.2007.12.019 pubmed: 18255035
Lind, N. M. et al. Behavioral response to novelty correlates with dopamine receptor availability in striatum of Gottingen minipigs. Behavioural brain research 164, 172–177, https://doi.org/10.1016/j.bbr.2005.06.008 (2005).
doi: 10.1016/j.bbr.2005.06.008 pubmed: 16043240
Wittmann, B. C., Daw, N. D., Seymour, B. & Dolan, R. J. Striatal activity underlies novelty-based choice in humans. Neuron 58, 967–973, https://doi.org/10.1016/j.neuron.2008.04.027 (2008).
doi: 10.1016/j.neuron.2008.04.027 pubmed: 18579085 pmcid: 2535823
Hooks, M. S. et al. Individual locomotor response to novelty predicts selective alterations in D1 and D2 receptors and mRNAs. J Neurosci 14, 6144–6152 (1994).
doi: 10.1523/JNEUROSCI.14-10-06144.1994 pubmed: 7931568 pmcid: 6576994
Gjedde, A., Kumakura, Y., Cumming, P., Linnet, J. & Moller, A. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proceedings of the National Academy of Sciences of the United States of America 107, 3870–3875, https://doi.org/10.1073/pnas.0912319107 (2010).
doi: 10.1073/pnas.0912319107 pubmed: 20133675 pmcid: 2840468
Cooper, S., Robison, A. J. & Mazei-Robison, M. S. Reward Circuitry in Addiction. Neurotherapeutics 14, 687–697, https://doi.org/10.1007/s13311-017-0525-z (2017).
doi: 10.1007/s13311-017-0525-z pubmed: 28324454 pmcid: 5509624
Nielsen, G. [We are not proud enough]. Sygeplejersken 90, 18–20 (1990).
pubmed: 2343406
Luscher, C. The Emergence of a Circuit Model for Addiction. Annu Rev Neurosci 39, 257–276, https://doi.org/10.1146/annurev-neuro-070815-013920 (2016).
doi: 10.1146/annurev-neuro-070815-013920 pubmed: 27145911
James, M. H. Mimicking Human Drug Consumption Patterns in Rat Engages Corticostriatal Circuitry. Neuroscience 442, 311–313, https://doi.org/10.1016/j.neuroscience.2020.06.012 (2020).
doi: 10.1016/j.neuroscience.2020.06.012 pubmed: 32682655
Sadri-Vakili, G. Cocaine triggers epigenetic alterations in the corticostriatal circuit. Brain Res 1628, 50–59, https://doi.org/10.1016/j.brainres.2014.09.069 (2015).
doi: 10.1016/j.brainres.2014.09.069 pubmed: 25301690
Bobadilla, A. C. et al. Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior. Prog Brain Res 235, 93–112, https://doi.org/10.1016/bs.pbr.2017.07.013 (2017).
doi: 10.1016/bs.pbr.2017.07.013 pubmed: 29054293 pmcid: 5794216
Wall, N. R. et al. Complementary Genetic Targeting and Monosynaptic Input Mapping Reveal Recruitment and Refinement of Distributed Corticostriatal Ensembles by Cocaine. Neuron 104, 916–930 e915, https://doi.org/10.1016/j.neuron.2019.10.032 (2019).
doi: 10.1016/j.neuron.2019.10.032 pubmed: 31759807 pmcid: 6941653
Chesler, E. J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37, 233–242, https://doi.org/10.1038/ng1518 (2005).
doi: 10.1038/ng1518 pubmed: 15711545
Munro, D. et al. The regulatory landscape of multiple brain regions in outbred heterogeneous stock rats. Nucleic Acids Res 50, 10882–10895, https://doi.org/10.1093/nar/gkac912 (2022).
doi: 10.1093/nar/gkac912 pubmed: 36263809 pmcid: 9638908
Bubier, J. A. et al. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol. Front Behav Neurosci 10, 1, https://doi.org/10.3389/fnbeh.2016.00001 (2016).
doi: 10.3389/fnbeh.2016.00001 pubmed: 26834590 pmcid: 4720795
Bubier, J. A. et al. Identification of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision. genetics. Genetics 197, 1377–1393, https://doi.org/10.1534/genetics.114.166165 (2014).
doi: 10.1534/genetics.114.166165 pubmed: 24923803
Svenson, K. L. et al. High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 190(2), 437–447, https://doi.org/10.1534/genetics.111.132597 (2012).
Chesler, E. J. Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse populations in behavioral genetics research. Mamm Genome 25, 3–11, https://doi.org/10.1007/s00335-013-9492-9 (2014).
doi: 10.1007/s00335-013-9492-9 pubmed: 24272351
Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The Diversity Outbred mouse population. Mamm Genome 23, 713–718, https://doi.org/10.1007/s00335-012-9414-2 (2012).
doi: 10.1007/s00335-012-9414-2 pubmed: 22892839 pmcid: 3524832
Chesler, E. J. et al. The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome 19, 382–389, https://doi.org/10.1007/s00335-008-9135-8 (2008).
doi: 10.1007/s00335-008-9135-8 pubmed: 18716833 pmcid: 2745091
Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36, 1133–1137, https://doi.org/10.1038/ng1104-1133 (2004).
Ferraj, A. et al. Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. bioRxiv, https://doi.org/10.1101/2022.09.26.509577 (2022).
Threadgill, D. W. & Churchill, G. A. Ten years of the Collaborative Cross. Genetics 190, 291–294, https://doi.org/10.1534/genetics.111.138032 (2012).
doi: 10.1534/genetics.111.138032 pubmed: 22345604 pmcid: 3276648
Logan, R. W. et al. High-precision genetic mapping of behavioral traits in the diversity outbred mouse population. Genes Brain Behav 12, 424–437, https://doi.org/10.1111/gbb.12029 (2013).
doi: 10.1111/gbb.12029 pubmed: 23433259
Philip, V. M. et al. Genetic analysis in the Collaborative Cross breeding population. Genome Res 21, 1223–1238, https://doi.org/10.1101/gr.113886.110 (2011).
Chick, J. M. et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature 534, 500–505, https://doi.org/10.1038/nature18270 (2016).
doi: 10.1038/nature18270 pubmed: 27309819 pmcid: 5292866
Skelly, D. A. et al. Mapping the Effects of Genetic Variation on Chromatin State and Gene Expression Reveals Loci That Control Ground State Pluripotency. Cell Stem Cell 27, 459–469 e458, https://doi.org/10.1016/j.stem.2020.07.005 (2020).
doi: 10.1016/j.stem.2020.07.005 pubmed: 32795400 pmcid: 7484384
Keele, G. R. et al. Regulation of protein abundance in genetically diverse mouse populations. Cell Genom 1 https://doi.org/10.1016/j.xgen.2021.100003 (2021).
Recla, J. M. et al. Precise genetic mapping and integrative bioinformatics in Diversity Outbred mice reveals Hydin as a novel pain gene. Mamm Genome https://doi.org/10.1007/s00335-014-9508-0 (2014).
Palmer, R. H. C. et al. Multi-omic and multi-species meta-analyses of nicotine consumption. Transl Psychiatry 11, 98, https://doi.org/10.1038/s41398-021-01231-y (2021).
doi: 10.1038/s41398-021-01231-y pubmed: 33542196 pmcid: 7862377
Huggett, S. B., Bubier, J. A., Chesler, E. J. & Palmer, R. H. C. Do gene expression findings from mouse models of cocaine use recapitulate human cocaine use disorder in reward circuitry? Genes Brain Behav 20, e12689, https://doi.org/10.1111/gbb.12689 (2021).
doi: 10.1111/gbb.12689 pubmed: 32720468
Palmer, R. H. C. et al. Integration of evidence across human and model organism studies: A meeting report. Genes Brain Behav, e12738. https://doi.org/10.1111/gbb.12738 (2021).
Binh Tran, T. D. et al. Microbial glutamate metabolism predicts intravenous cocaine self-administration in diversity outbred mice. Neuropharmacology 226, 109409, https://doi.org/10.1016/j.neuropharm.2022.109409 (2023).
doi: 10.1016/j.neuropharm.2022.109409 pubmed: 36592885
Chesler, E. J. et al. Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection. G3 (Bethesda) 6, 3893–3902, https://doi.org/10.1534/g3.116.035527 (2016).
doi: 10.1534/g3.116.035527 pubmed: 27694113 pmcid: 5144960
Sathyanesan, M. et al. A molecular characterization of the choroid plexus and stress-induced gene regulation. Transl Psychiatry 2, e139, https://doi.org/10.1038/tp.2012.64 (2012).
doi: 10.1038/tp.2012.64 pubmed: 22781172 pmcid: 3410626
Morgan, A. P. et al. The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3 (Bethesda) 6, 263–279, https://doi.org/10.1534/g3.115.022087 (2015).
doi: 10.1534/g3.115.022087 pubmed: 26684931 pmcid: 4751547
Broman, K. W., Gatti, D. M., Svenson, K. L., Sen, S. & Churchill, G. A. Cleaning Genotype Data from Diversity Outbred Mice. G3 (Bethesda) 9, 1571–1579, https://doi.org/10.1534/g3.119.400165 (2019).
doi: 10.1534/g3.119.400165 pubmed: 30877082
Broman, K. W. et al. R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations. Genetics 211, 495–502, https://doi.org/10.1534/genetics.118.301595 (2019).
doi: 10.1534/genetics.118.301595 pubmed: 30591514 pmcid: 6366910
Choi, K. et al. Genotype-free individual genome reconstruction of Multiparental Population Models by RNA sequencing data. bioRxiv, https://doi.org/10.1101/2020.10.11.335323 (2020).
Gatti, D. M. et al. Quantitative trait locus mapping methods for diversity outbred mice. G3 (Bethesda) 4, 1623–1633, https://doi.org/10.1534/g3.114.013748 (2014).
doi: 10.1534/g3.114.013748 pubmed: 25237114
Cornes, B. K. et al. Protein coding variation in the J:ARC and J:DO outbred laboratory mouse stocks provides a molecular basis for distinct research applications. G3 (Bethesda) 13. https://doi.org/10.1093/g3journal/jkad015 (2023).
Churchill, G. A. Data Structures in QTL Viewer https://github.com/churchill-lab/qtl-viewer/blob/master/docs/QTLViewerDataStructures.md (2017).
Vincent, M. et al. QTLViewer: an interactive webtool for genetic analysis in the Collaborative Cross and Diversity Outbred mouse populations. G3 (Bethesda) 12. https://doi.org/10.1093/g3journal/jkac146 (2022).
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559, https://doi.org/10.1186/1471-2105-9-559 (2008).
doi: 10.1186/1471-2105-9-559 pubmed: 19114008 pmcid: 2631488
Chesler, E. J. & Langston, M. A. in Proceedings of the 2005 joint annual satellite conference on Systems biology and regulatory genomics 150–165 (Springer-Verlag, San Diego, CA, USA, 2005).
Baker, E., Bubier, J. A., Reynolds, T., Langston, M. A. & Chesler, E. J. GeneWeaver: data driven alignment of cross-species genomics in biology and disease. Nucleic Acids Res 44, D555–559, https://doi.org/10.1093/nar/gkv1329 (2016).
doi: 10.1093/nar/gkv1329 pubmed: 26656951
Philip, V. & Chesler, E. Gene expression genetics of the striatum of Diversity Outbred mice. NCBI Gene Expression Omnibus https://identifiers.org/geo/GSE162732 (2023).
Chesler, E. J. Diversity Informatics Platform https://divdb.jax.org (2023).
Chesler, E. et al. Behavioral phenotypes on cocaine self-administration, acute drug response, impulsivity, reward seeking, and circadian dysregulation in Collaborative Cross strains of mice, Diversity Outbred mice, and their 8 founder inbred strains. Mouse Phenome Database https://phenome.jax.org/projects/CSNA03 (2023).
Skelly, D. A., Raghupathy, N., Robledo, R. F., Graber, J. H. & Chesler, E. J. Reference Trait Analysis Reveals Correlations Between Gene Expression and Quantitative Traits in Disjoint Samples. Genetics 212, 919–929, https://doi.org/10.1534/genetics.118.301865 (2019).
doi: 10.1534/genetics.118.301865 pubmed: 31113812 pmcid: 6614885

Auteurs

Vivek M Philip (VM)

The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA.

Hao He (H)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.

Michael C Saul (MC)

The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA.

Price E Dickson (PE)

Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, Huntington, WV, 25703, USA.

Jason A Bubier (JA)

The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA.

Elissa J Chesler (EJ)

The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA. Elissa.Chesler@jax.org.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH