Application of mNGS in the study of pulmonary microbiome in pneumoconiosis complicated with pulmonary infection patients and exploration of potential biomarkers.
biomarker
metagenomic next-generation sequencing
microbiome
pneumoconiosis
pulmonary infection
Journal
Frontiers in cellular and infection microbiology
ISSN: 2235-2988
Titre abrégé: Front Cell Infect Microbiol
Pays: Switzerland
ID NLM: 101585359
Informations de publication
Date de publication:
2023
2023
Historique:
received:
04
04
2023
accepted:
26
06
2023
medline:
8
8
2023
pubmed:
7
8
2023
entrez:
7
8
2023
Statut:
epublish
Résumé
Pneumoconiosis patients have a high prevalence of pulmonary infections, which can complicate diagnosis and treatment. And there is no comprehensive study of the microbiome of patients with pneumoconiosis. The application of metagenomic next-generation sequencing (mNGS) fills the gap to some extent by analyzing the lung microbiota of pneumoconiosis population while achieving accurate diagnosis. We retrospectively analyzed 44 patients with suspected pneumoconiosis complicated with pulmonary infection between Jan 2020 and Nov 2022. Bronchoalveolar lavage fluid (BALF) specimens from 44 patients were collected and tested using the mNGS technology. Among the lung microbiome of pneumoconiosis patients with complicated pulmonary infection (P group), the most frequently detected bacteria and fungi at the genus level were Overall, we not only revealed a comprehensive lung microbiome profile of pneumoconiosis patients, but also compared the differences between their microbiome and that of non-pneumoconiosis complicated with pulmonary infection patients. This provides a good basis for a better understanding of the relationship between pneumoconiosis and microorganisms, and for the search of potential biomarkers.
Sections du résumé
Background
Pneumoconiosis patients have a high prevalence of pulmonary infections, which can complicate diagnosis and treatment. And there is no comprehensive study of the microbiome of patients with pneumoconiosis. The application of metagenomic next-generation sequencing (mNGS) fills the gap to some extent by analyzing the lung microbiota of pneumoconiosis population while achieving accurate diagnosis.
Methods
We retrospectively analyzed 44 patients with suspected pneumoconiosis complicated with pulmonary infection between Jan 2020 and Nov 2022. Bronchoalveolar lavage fluid (BALF) specimens from 44 patients were collected and tested using the mNGS technology.
Results
Among the lung microbiome of pneumoconiosis patients with complicated pulmonary infection (P group), the most frequently detected bacteria and fungi at the genus level were
Conclusions
Overall, we not only revealed a comprehensive lung microbiome profile of pneumoconiosis patients, but also compared the differences between their microbiome and that of non-pneumoconiosis complicated with pulmonary infection patients. This provides a good basis for a better understanding of the relationship between pneumoconiosis and microorganisms, and for the search of potential biomarkers.
Identifiants
pubmed: 37545858
doi: 10.3389/fcimb.2023.1200157
pmc: PMC10403237
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1200157Informations de copyright
Copyright © 2023 Yuan, Xie, Shi and Zhou.
Déclaration de conflit d'intérêts
ZZS was employed by the company Dinfectome Inc. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2017 Jan 20;35(1):58-61
pubmed: 28241707
J Adv Res. 2021 Sep 29;38:201-212
pubmed: 35572406
Clin Infect Dis. 2018 Nov 13;67(suppl_2):S231-S240
pubmed: 30423048
Hum Pathol. 2004 Dec;35(12):1515-23
pubmed: 15619211
Infect Drug Resist. 2021 Jan 06;14:11-16
pubmed: 33442272
Front Cardiovasc Med. 2022 Mar 08;9:811492
pubmed: 35369282
Front Cell Infect Microbiol. 2021 Mar 16;11:637018
pubmed: 33796482
Environ Sci Pollut Res Int. 2022 Dec;29(59):88690-88698
pubmed: 35836046
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12353-E12362
pubmed: 30482864
Genome Res. 2019 May;29(5):831-842
pubmed: 30992304
Chest. 2010 Oct;138(4):817-24
pubmed: 20453070
Respirology. 2019 Dec;24(12):1165-1175
pubmed: 31517432
Environ Res. 2020 Aug;187:109650
pubmed: 32416357
Transpl Int. 2022 Feb 10;35:10265
pubmed: 35221789
Drugs. 2021 Sep;81(13):1453-1466
pubmed: 34328626
Respirology. 2017 May;22(4):662-670
pubmed: 28370783
Front Microbiol. 2020 Dec 14;11:596175
pubmed: 33381092
BMC Infect Dis. 2013 Jan 22;13:24
pubmed: 23336346
Science. 2022 Jan 21;375(6578):296-301
pubmed: 35025605
Acta Derm Venereol. 2014 Nov;94(6):727-8
pubmed: 24573766
Int J Mycobacteriol. 2019 Jul-Sep;8(3):295-297
pubmed: 31512608
J Investig Med High Impact Case Rep. 2022 Jan-Dec;10:23247096221127100
pubmed: 36154322
Curr Opin Virol. 2018 Oct;32:48-59
pubmed: 30268926
Nat Med. 2021 Apr;27(4):688-699
pubmed: 33820995
BMC Infect Dis. 2019 Feb 8;19(1):130
pubmed: 30736735
Intern Med. 2011;50(22):2783-91
pubmed: 22082890
Lancet. 2018 Nov 10;392(10159):1789-1858
pubmed: 30496104
Nat Commun. 2022 Mar 30;13(1):1675
pubmed: 35354815
J Clin Microbiol. 2008 May;46(5):1885-7
pubmed: 18305134
BMC Pulm Med. 2020 Sep 11;20(1):241
pubmed: 32912168
Curr Opin Microbiol. 2021 Aug;62:21-27
pubmed: 34034082
Int J Syst Evol Microbiol. 2006 Sep;56(Pt 9):2049-2054
pubmed: 16957098
mSphere. 2020 Feb 26;5(1):
pubmed: 32102941
Chin Med J (Engl). 2021 Apr 13;134(8):898-907
pubmed: 33879753
Lancet. 2015 Jan 10;385(9963):117-71
pubmed: 25530442
Infect Drug Resist. 2023 Mar 30;16:1865-1874
pubmed: 37020798
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Rev Mal Respir. 2017 Dec;34(10):1098-1113
pubmed: 28688757
Infect Dis Ther. 2023 Apr;12(4):1175-1187
pubmed: 36988865
Acta Clin Belg. 2004 Sep-Oct;59(5):251-7
pubmed: 15641394
Metabolites. 2022 Sep 28;12(10):
pubmed: 36295819
Nat Rev Genet. 2019 Jun;20(6):341-355
pubmed: 30918369
J Thorac Dis. 2015 Dec;7(12):2214-25
pubmed: 26793343
Scand J Infect Dis. 2009;41(9):656-62
pubmed: 19565408
Ann Clin Microbiol Antimicrob. 2023 Jan 16;22(1):6
pubmed: 36647095
Front Med (Lausanne). 2022 Mar 11;9:780828
pubmed: 35360716
Respir Res. 2018 May 25;19(1):102
pubmed: 29801490
J Fungi (Basel). 2019 Jul 01;5(3):
pubmed: 31266196
Eur J Radiol. 2013 Oct;82(10):1819-30
pubmed: 23791520
Occup Environ Med. 2020 Jun;77(6):407-414
pubmed: 32188634
J Thorac Dis. 2019 Jun;11(6):2581-2616
pubmed: 31372297
Clin Respir J. 2018 Apr;12(4):1320-1360
pubmed: 28756639
Genome Biol. 2019 Nov 28;20(1):257
pubmed: 31779668
Lung. 2009 Jan-Feb;187(1):51-4
pubmed: 18758857
Zhonghua Jie He He Hu Xi Za Zhi. 2023 Apr 12;46(4):322-335
pubmed: 36787941
Int J Syst Evol Microbiol. 2018 Nov;68(11):3666-3677
pubmed: 30231956
J Med Virol. 2020 Apr;92(4):408-417
pubmed: 31944312
Am J Respir Crit Care Med. 2020 Mar 1;201(5):555-563
pubmed: 31973575
Life (Basel). 2022 Jun 02;12(6):
pubmed: 35743861
Ann Intensive Care. 2020 Jan 28;10(1):10
pubmed: 31993803
Emerg Infect Dis. 2009 Apr;15(4):619-20
pubmed: 19331753
Int J Infect Dis. 2023 Mar;128:321-324
pubmed: 36642210