Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition.
Cell wall
cellulose
chirality
helical growth
pectin
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
received:
27
10
2022
accepted:
19
07
2023
pmc-release:
01
11
2024
medline:
23
10
2023
pubmed:
7
8
2023
entrez:
7
8
2023
Statut:
ppublish
Résumé
Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.
Identifiants
pubmed: 37548081
doi: 10.1111/tpj.16414
pmc: PMC10592269
mid: NIHMS1921485
doi:
Substances chimiques
Cellulose
9004-34-6
Rhamnogalacturonans
0
Pectins
89NA02M4RX
Polysaccharides
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
855-870Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM114274
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM131843
Pays : United States
Informations de copyright
© 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
Références
Biochemistry. 2011 Feb 15;50(6):989-1000
pubmed: 21204530
Carbohydr Res. 2006 Jan 16;341(1):138-52
pubmed: 16297893
PLoS Genet. 2017 Jun 23;13(6):e1006851
pubmed: 28644898
Langmuir. 2015 Jun 16;31(23):6507-13
pubmed: 26020691
Plant Cell. 2020 Nov;32(11):3576-3597
pubmed: 32883711
Development. 2018 Jun 4;145(11):
pubmed: 29739839
Trends Plant Sci. 2008 Aug;13(8):430-6
pubmed: 18603466
J Microsc. 2017 Oct;268(1):13-27
pubmed: 28654160
J Phys Chem B. 2011 Apr 14;115(14):3747-55
pubmed: 21425811
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
Plant Cell. 2008 Aug;20(8):2160-76
pubmed: 18757557
J Theor Biol. 2021 Sep 21;525:110736
pubmed: 33915144
Curr Biol. 2020 Mar 9;30(5):941-947.e2
pubmed: 32037093
Plant Cell. 2006 Jul;18(7):1630-41
pubmed: 16766693
Front Plant Sci. 2015 Jul 14;6:523
pubmed: 26236321
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8544-9
pubmed: 17488810
Annu Rev Plant Biol. 2013;64:747-79
pubmed: 23451775
Annu Rev Cell Dev Biol. 2005;21:203-22
pubmed: 16212493
Plant Cell. 2008 May;20(5):1289-302
pubmed: 18460606
J Biol Chem. 2007 May 18;282(20):14932-41
pubmed: 17314094
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
J Integr Plant Biol. 2018 Oct;60(10):910-923
pubmed: 29727062
J Microsc. 1995 Nov;180(Pt 2):140-7
pubmed: 8537959
Nature. 2017 Apr 6;544(7648):65-70
pubmed: 28329766
Ann Bot. 2011 Sep;108(4):609-16
pubmed: 21470973
J Agric Food Chem. 2006 Feb 8;54(3):597-606
pubmed: 16448156
Plant Cell. 1990 Aug;2(8):755-67
pubmed: 2152125
Plant J. 2010 Nov;64(4):657-67
pubmed: 21070417
Plant Cell Physiol. 2018 Dec 1;59(12):2624-2636
pubmed: 30184190
Front Plant Sci. 2019 Oct 23;10:1398
pubmed: 31708959
Anal Biochem. 1969 Dec;32(3):420-4
pubmed: 5361396
Curr Biol. 2015 Jun 29;25(13):1765-70
pubmed: 26073137
Science. 2021 May 14;372(6543):706-711
pubmed: 33986175
J Struct Biol. 2009 Nov;168(2):337-44
pubmed: 19567269
Science. 1993 Aug 20;261(5124):1032-5
pubmed: 17739625
Science. 2008 Dec 12;322(5908):1650-5
pubmed: 19074340
Planta. 1992 Jun;187(3):405-13
pubmed: 24178082
J Exp Bot. 2007;58(7):1795-802
pubmed: 17383990
Plant Physiol. 2005 Sep;139(1):397-407
pubmed: 16126855
Elife. 2017 Nov 06;6:
pubmed: 29106370
Plant Cell. 2002 Jul;14(7):1635-48
pubmed: 12119380
J Biol Chem. 2007 Feb 23;282(8):5389-403
pubmed: 17190829
Development. 2000 Oct;127(20):4443-53
pubmed: 11003843
Plant Cell. 2019 Feb;31(2):282-296
pubmed: 30647077
Front Plant Sci. 2019 Feb 25;10:173
pubmed: 30858857
J Exp Bot. 2019 Oct 15;70(19):5231-5243
pubmed: 31198941
Biochemistry. 2012 Dec 11;51(49):9846-56
pubmed: 23167456
J Biol Chem. 2003 Nov 7;278(45):43910-8
pubmed: 12900416
Nat Nanotechnol. 2017 May 5;12(5):410-419
pubmed: 28474691
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):020503
pubmed: 25215676
Plant Mol Biol. 2001 Sep;47(1-2):95-113
pubmed: 11554483
Int J Biol Macromol. 1992 Jun;14(3):170-2
pubmed: 1390450
Nat Commun. 2015 Jun 25;6:7564
pubmed: 26108282
Curr Biol. 2017 Aug 7;27(15):2248-2259.e4
pubmed: 28736166
Plant Physiol. 2010 Feb;152(2):787-96
pubmed: 19965966
Development. 2016 Sep 15;143(18):3272-82
pubmed: 27624832
Plant J. 2018 May;94(4):649-660
pubmed: 29505161
Front Plant Sci. 2019 Mar 01;9:1894
pubmed: 30881371
Plant Signal Behav. 2017 Nov 2;12(11):e1382794
pubmed: 29072548
Plant Physiol. 2000 Dec;124(4):1493-506
pubmed: 11115865
Plant Physiol. 2003 Jun;132(2):1033-40
pubmed: 12805631
Plant Physiol. 2015 Jul;168(3):871-84
pubmed: 26036615
Plant J. 2013 Oct;76(1):61-72
pubmed: 23802881
Plant J. 2005 Jul;43(2):181-90
pubmed: 15998305
Plant J. 2007 May;50(4):605-14
pubmed: 17425712
Curr Opin Plant Biol. 2018 Dec;46:77-86
pubmed: 30142487
Methods Mol Biol. 2021;2304:111-130
pubmed: 34028713
Nat Protoc. 2012 Sep;7(9):1590-607
pubmed: 22864200
Protoplasma. 2001;215(1-4):150-71
pubmed: 11732054
Plant Cell. 2021 May 31;33(4):961-979
pubmed: 33793815
Curr Biol. 2018 Mar 19;28(6):987-994.e3
pubmed: 29526586
Plant J. 2016 Jan;85(2):179-92
pubmed: 26676644
Science. 2001 Oct 26;294(5543):846-9
pubmed: 11679668