Listeria monocytogenes in food businesses: From persistence strategies to intervention/prevention strategies-A review.

C&D Listeria monocytogenes biofilm disinfectant resistance hygienic design persistence

Journal

Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205

Informations de publication

Date de publication:
09 2023
Historique:
revised: 22 06 2023
received: 17 04 2023
accepted: 12 07 2023
medline: 13 9 2023
pubmed: 7 8 2023
entrez: 7 8 2023
Statut: ppublish

Résumé

In 2023, Listeria monocytogenes persistence remains a problem in the food business. A profound understanding of how this pathogen persists may lead to better aimed intervention/prevention strategies. The lack of a uniform definition of persistence makes the comparison between studies complex. Harborage sites offer protection against adverse environmental conditions and form the ideal habitat for the formation of biofilms, one of the major persistence strategies. A retarded growth rate, disinfectant resistance/tolerance, desiccation resistance/tolerance, and protozoan protection complete the list of persistence strategies for Listeria monocytogenes and can occur on themselves or in combination with biofilms. Based on the discussed persistence strategies, intervention strategies are proposed. By enhancing the focus on four precaution principles (cleaning and disinfection, infrastructure/hygienic design, technical maintenance, and work methodology) as mentioned in Regulation (EC) No. 852/2004, the risk of persistence can be decreased. All of the intervention strategies result in obtaining and maintaining a good general hygiene status throughout the establishment at all levels ranging from separate equipment to the entire building.

Identifiants

pubmed: 37548605
doi: 10.1111/1541-4337.13219
doi:

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3910-3950

Informations de copyright

© 2023 Institute of Food Technologists®.

Références

3M, & Cornell University. (2019). Environmental monitoring handbook. Author.
Aarnisalo, K., Lundén, J., Korkeala, H., & Wirtanen, G. (2007). Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT - Food Science and Technology, 40(6), 1041-1048. https://doi.org/10.1016/J.LWT.2006.07.009
Aase, B., Sundheim, G., Langsrud, S., & Rørvik, L. M. (2000). Occurrence of and a possible mechanism for resistance to a quaternary ammonium compound in Listeria monocytogenes. International Journal of Food Microbiology, 62(1-2), 57-63. https://doi.org/10.1016/S0168-1605(00)00357-3
Akya, A., Pointon, A., & Thomas, C. (2010). Listeria monocytogenes does not survive ingestion by Acanthamoeba polyphaga. Microbiology, 156(3), 809-818. https://doi.org/10.1099/mic.0.031146-0
Alavi, H. E. D., & Truelstrup Hansen, L. (2013). Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. Biofouling, 29(10), 1253-1268. https://doi.org/10.1080/08927014.2013.835805
Amaro, F., & Martín-González, A. (2021). Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. International Microbiology: The Official Journal of the Spanish Society for Microbiology, 24(4), 559-571. https://doi.org/10.1007/S10123-021-00192-Y
Annous, B. A., Fratamico, P. M., & Smith, J. L. (2009). Quorum sensing in biofilms: Why bacteria behave the way they do. Journal of Food Science, 74(1), 24-37. https://doi.org/10.1111/j.1750-3841.2008.01022.x
Arndt, H., Schmidt-Denter, K., Auer, B., & Weitere, M. (2003). Protozoans and biofilms. In W. E. Krumbein, D. M. Paterson, & G. A. Zavarzin (Eds.), Fossil and recent biofilms (pp. 161-179). Springer. https://doi.org/10.1007/978-94-017-0193-8_10
Aryal, M., & Muriana, P. M. (2019). Efficacy of commercial sanitizers used in food processing facilities for inactivation of Listeria monocytogenes, E. coli O157:H7, and Salmonella biofilms. Foods, 8(12), 639. https://doi.org/10.3390/FOODS8120639
Bagge-Ravn, D., Ng, Y., Hjelm, M., Christiansen, J. N., Johansen, C., & Gram, L. (2003). The microbial ecology of processing equipment in different fish industries - Analysis of the microflora during processing and following cleaning and disinfection. International Journal of Food Microbiology, 87(3), 239-250. https://doi.org/10.1016/S0168-1605(03)00067-9
Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305(5690), 1622-1625. https://doi.org/10.1126/SCIENCE.1099390
Barroso, I., Maia, V., Cabrita, P., Martínez-Suárez, J. v., & Brito, L. (2019). The benzalkonium chloride resistant or sensitive phenotype of Listeria monocytogenes planktonic cells did not dictate the susceptibility of its biofilm counterparts. Food Research International, 123, 373-382. https://doi.org/10.1016/J.FOODRES.2019.05.008
Beetz, J.-P., Kloberdanz, H., & Kirchner, E. (2017). New ways of hygienic design - A methodical approach. 21st International Conference on Engineering Design, ICED17.
Belessi, C. E. A., Gounadaki, A. S., Psomas, A. N., & Skandamis, P. N. (2011). Efficiency of different sanitation methods on Listeria monocytogenes biofilms formed under various environmental conditions. International Journal of Food Microbiology, 145, (Suppl. 1), S46-S52. https://doi.org/10.1016/J.IJFOODMICRO.2010.10.020
Bénézech, T., & Faille, C. (2017). Two-phase kinetics of biofilm removal during CIP. Respective roles of mechanical and chemical effects on the detachment of single cells vs cell clusters from a Pseudomonas fluorescens biofilm. Journal of Food Engineering, 219, 121-128.
Beuchat, L., Komitopoulou, E., Betts, R., Beckers, H., Bourdichon, F., Joosten, H., Fanning, S., & ter Kuile, B. (2011). Persistence and survival of pathogens in dry foods and dry food processing environments. ILSI Europe Report Series. ILSI Europe. https://www.narcis.nl/publication/RecordID/oai:dare.uva.nl:publications%2F66faf8c0-607b-40ab-a12f-d77019c6a016
Bigger, J. W. (1944). Treatment of staphylococcal infections with penicillin intermittent sterilisation. The Lancet, 244(6320), 497-500. https://doi.org/10.1016/S0140-6736(00)74210-3
Billi, D., & Potts, M. (2002). Life and death of dried prokaryotes. Research in Microbiology, 153(1), 7-12. www.elsevier.com/locate/resmicMini-review
Bland, R., Brown, S. R. B., Waite-Cusic, J., & Kovacevic, J. (2021). Probing antimicrobial resistance and sanitizer tolerance themes and their implications for the food industry through the Listeria monocytogenes lens. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1777-1802. https://doi.org/10.1111/1541-4337.12910
Blel, W., Bénézech, T., Legentilhomme, P., Legrand, J., & Le Gentil-Lelièvre, C. (2007). Effect of flow arrangement on the removal of Bacillus spores from stainless steel equipment surfaces during a Cleaning In Place procedure. Chemical Engineering Science, 62(14), 3798-3808. https://doi.org/10.1016/j.ces.2007.04.011
Blel, W., Legentilhomme, P., Bénézech, T., & Fayolle, F. (2013). Cleanability study of a scraped surface heat exchanger. Food and Bioproducts Processing, 91(2), 95-102. https://doi.org/10.1016/j.fbp.2012.10.002
Bode, K., Hooper, R. J., Paterson, W. R., Wilson, D. I., Augustin, W., & Scholl, S. (2007). Pulsed flow cleaning of whey protein fouling layers. Heat Transfer Engineering, 28(3), 202-209. https://doi.org/10.1080/01457630601064611
Borucki, M. K., Peppin, J. D., White, D., Loge, F., & Call, D. R. (2003). Variation in biofilm formation among strains of Listeria monocytogenes. Applied and Environmental Microbiology, 69(12), 7336-7342. https://doi.org/10.1128/AEM.69.12.7336-7342.2003
Boucher, C., Waite-Cusic, J., Stone, D., & Kovacevic, J. (2021). Relative performance of commercial citric acid and quaternary ammonium sanitizers against Listeria monocytogenes under conditions relevant to food industry. Food Microbiology, 97, 103752. https://doi.org/10.1016/J.FM.2021.103752
Bremer, P. J., Monk, I., & Osborne, C. M. (2001). Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp. Journal of Food Protection, 64(9), 1369-1376.
Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: A review. Biofouling, 27(9), 1017-1032. https://doi.org/10.1080/08927014.2011.626899
British Retail Consortium (BRC). (2018). BRC Global Standard Food Safety Issue 8. Author.
Burfoot, D. (2005). Aerosols as a contamination risk. In H. L. M. Lelieveld, M. A. Mostert, & J. Holah (Eds.), Handbook of hygiene control in the food industry (pp. 93-102). Elsevier. https://doi.org/10.1533/9781845690533.1.93
Burgess, C. M., Gianotti, A., Gruzdev, N., Holah, J., Knøchel, S., Lehner, A., Margas, E., Esser, S. S., Sela Saldinger, S., & Tresse, O. (2016). The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. International Journal of Food Microbiology, 221, 37-53. https://doi.org/10.1016/j.ijfoodmicro.2015.12.014
Carpentier, B. (2005). Improving the design of floors. In H. L. M. Lelieveld, M. A. Mostert, & J. Holah (Eds.), Handbook of hygiene control in the food industry (pp. 168-184). Elsevier. https://doi.org/10.1533/9781845690533.2.168
Carpentier, B. (2009). Biofilms in red meat processing. In P. M. Fratamico, B. A. Annous, & N. W. Gunther (Eds.), Biofilms in the food and beverage industries (pp. 375-395). Elsevier. https://doi.org/10.1533/9781845697167.4.375
Carpentier, B., & Cerf, O. (2011). Review - Persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, 145(1), 1-8. https://doi.org/10.1016/j.ijfoodmicro.2011.01.005
Cerf, O., Carpentier, B., & Sanders, P. (2010). Tests for determining in-use concentrations of antibiotics and disinfectants are based on entirely different concepts: “Resistance” has different meanings. International Journal of Food Microbiology, 136(3), 247-254. https://doi.org/10.1016/j.ijfoodmicro.2009.10.002
Chasseignaux, E., Gérault, P., Toquin, M. T., Salvat, G., Colin, P., & Ermel, G. (2002). Ecology of Listeria monocytogenes in the environment of raw poultry meat and raw pork meat processing plants. FEMS Microbiology Letters, 210(2), 271-275. https://doi.org/10.1111/j.1574-6968.2002.tb11192.x
Checinska, A., Paszczynski, A., & Burbank, M. (2015). Bacillus and other spore-forming genera: Variations in responses and mechanisms for survival. Annual Review of Food Science and Technology, 6, 351-369. https://doi.org/10.1146/ANNUREV-FOOD-030713-092332
Chen, Y., Jackson, K. M., Chea, F. P., & Schaffner, D. W. (2001). Quantification and variability analysis of bacterial cross-contamination rates in common food service tasks. Journal of Food Protection, 64(1), 72-80.
Chmielewski, R. A. N., & Frank, J. F. (2003). Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety, 2(1), 22-32. https://doi.org/10.1111/j.1541-4337.2003.tb00012.x
Christeyns. (2019). Listeria monocytogenes in the meat industry (1st ed.). Christeyns Food Hygiene.
Colagiorgi, A., Bruini, I., di Ciccio, P. A., Zanardi, E., Ghidini, S., & Ianieri, A. (2017). Listeria monocytogenes Biofilms in the wonderland of food industry. Pathogens, 6(3), 41. https://doi.org/10.3390/pathogens6030041
Costa, A., Bertolotti, L., Brito, L., & Civera, T. (2016). Biofilm formation and disinfectant susceptibility of persistent and nonpersistent Listeria monocytogenes isolates from gorgonzola cheese processing plants. Foodborne Pathogens and Disease, 13(11), 602-609. https://doi.org/10.1089/fpd.2016.2154
Costerton, W., Cheng, K.-L., Geesey, G. G., Ladd, T. L., Nickel, C., Dasgupta, M., & Marrie, T. I. (1987). Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435-464. https://doi.org/10.1146/annurev.mi.41.100187.002251
Cruz, C. D., & Fletcher, G. C. (2012). Assessing manufacturers’ recommended concentrations of commercial sanitizers on inactivation of Listeria monocytogenes. Food Control, 26(1), 194-199. https://doi.org/10.1016/J.FOODCONT.2012.01.041
Cunault, C., Faille, C., Calabozo-Delgado, A., & Benezech, T. (2019). Structure and resistance to mechanical stress and enzymatic cleaning of Pseudomonas fluorescens biofilms formed in fresh-cut ready to eat washing tanks. Journal of Food Engineering, 262, 154-161. https://doi.org/10.1016/j.jfoodeng.2019.06.006
da Silva Fernandes, M., Kabuki, D. Y., & Kuaye, A. Y. (2015). Behavior of Listeria monocytogenes in a multi-species biofilm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures. International Journal of Food Microbiology, 200, 5-12. https://doi.org/10.1016/j.ijfoodmicro.2015.01.003
Debevere, J., Devlieghere, F., & Jacxsens, L. (2021). Levensmiddelenmicrobiologie en -conservering: Frank Devlieghere, Johan Debevere, Liesbeth Jacxsens, Andreja Rajkovic, Mieke Uyttendaele, An Vermeulen. Die Keure. https://lib.ugent.be/nl/catalog/rug01:003005101?i=3&q=Levensmiddelenmicrobiologie+en+-conservering
De Boeck, E. (2018). Food safety culture and climate, exploring the human factor in food safety management. Ghent University, Faculty of Bioscience Engineering.
de Grandi, A. Z., Pinto, U. M., & Destro, M. T. (2018). Dual-species biofilm of Listeria monocytogenes and Escherichia coli on stainless steel surface. World Journal of Microbiology and Biotechnology, 34(3), 61. https://doi.org/10.1007/s11274-018-2445-4
de Kievit, T. (2011). Biofilms. In M.-Y. Murray (Ed.), Comprehensive biotechnology (2nd ed., Vol. 1, pp. 547-558). Academic Press. https://doi.org/10.1016/B978-0-08-088504-9.00064-7
de Reu, K., Rasschaert, G., & Lambrecht, E. (2022). Hygiene monitoring and verification of hygiene interventions in food industry. Twenty-Sixth Conference on Food Microbiology, Page 30, October 13-14, 2022 Brussels, Belgium.
Dhowlaghar, N., Shen, Q., Nannapaneni, R., Schilling, W., & Samala, A. (2019). Survival of acid stress adapted cells of Listeria monocytogenes serotypes 1/2a and 4b in commonly used disinfectants in broth and water models. LWT - Food Science and Technology, 109, 201-206. https://doi.org/10.1016/J.LWT.2019.04.007
Di Ciccio, P., Meloni, D., Festino, A. R., Conter, M., Zanardi, E., Ghidini, S., Vergara, A., Mazzette, R., & Ianieri, A. (2012). Longitudinal study on the sources of Listeria monocytogenes contamination in cold-smoked salmon and its processing environment in Italy. International Journal of Food Microbiology, 158(1), 79-84. https://doi.org/10.1016/j.ijfoodmicro.2012.06.016
Djordjevic, D., Wiedmann, M., & Mclandsborough, L. A. (2002). Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Applied and Environmental Microbiology, 68(6), 2950-2958. https://doi.org/10.1128/AEM.68.6.2950-2958.2002
Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881-890. http://www.microbelibrary.org/
Doyscher, D., Fieseler, L., Dons, L., Loessner, M. J., & Schuppler, M. (2013). Acanthamoeba feature a unique backpacking strategy to trap and feed on Listeria monocytogenes and other motile bacteria. Environmental Microbiology, 15(2), 433-446. https://doi.org/10.1111/j.1462-2920.2012.02858.x
Dzieciol, M., Schornsteiner, E., Muhterem-Uyar, M., Stessl, B., Wagner, M., & Schmitz-Esser, S. (2016). Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment. International Journal of Food Microbiology, 223, 33-40. https://doi.org/10.1016/j.ijfoodmicro.2016.02.004
EFSA BIOHAZ Panel. (2017). Hazard analysis approaches for certain small retail establishments in view of the application of their food safety management systems. EFSA Panel on Biological Hazards, 15(3), e04697. https://doi.org/10.2903/j.efsa.2017.4697
EFSA BIOHAZ Panel. (2018). Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health. EFSA Journal, 16(1), 5134. https://doi.org/10.2903/j.efsa.2018.5134
EFSA BIOHAZ Panel. (2020). The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA Journal, 18(4), 6092. https://doi.org/10.2903/j.efsa.2020.6092
Environmental Protection Agency (EPA). (2022). Efficacy test methods, test criteria, and labeling guidance for antimicrobial products with claims against biofilm on hard, non-porous surfaces. https://www.epa.gov/pesticide-analytical-methods/efficacy-test-methods-test-criteria-and-labeling-guidance#criteria
Environmental Protection Agency (EPA). (n.d.). What are antimicrobial pesticides? https://www.epa.gov/pesticide-registration/what-are-antimicrobial-pesticides
Erkmen, O. (2004). Hypochlorite inactivation kinetics of Listeria monocytogenes in phosphate buffer. Microbiological Research, 159(2), 167-171. https://doi.org/10.1016/J.MICRES.2004.03.002
Esbelin, J., Santos, T., & Ebraud, M. H. (2017). Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiology, 69, 82-88. https://doi.org/10.1016/j.fm.2017.07.017
European Centre for Disease Prevention and Control (ECDC). (2019). ECDC strategic framework for the integration of molecular and genomic typing into European surveillance and multi-country outbreak investigations -2019-2021. Author.
European Centre for Disease Prevention and Control (ECDC). (2020). European Food- and Waterborne Diseases and Zoonoses Network (FWD-Net). https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/fwd-net
European Centre for Disease Prevention and Control (ECDC). (2022). Eighth external quality assessment scheme for Listeria monocytogenes typing. Author.
European Chemicals Agency (ECHA). (2018). Guidance on the biocidal products regulation. Volume II: Efficacy-Assessment and evaluation (Parts B+C). https://doi.org/10.2823/49865
European Chemicals Agency (ECHA). (n.d.). Authorisation of biocidal products. https://echa.europa.eu/regulations/biocidal-products-regulation/authorisation-of-biocidal-products
European Commission. (n.d.). Glossary: Bacterial resistance. https://ec.europa.eu/health/scientific_committees/opinions_layman/en/biocides-antibiotic-resistance/Glossary/abc/bacterial-resistance.htm
European commission. (2020). Legislation. https://ec.europa.eu/food/safety/biosafety/food_hygiene/legislation_en
European Commission. (2023). RASFF portal. https://webgate.ec.europa.eu/rasff-window/portal/?event=SearchForm&cleanSearch=1
European Food Safety Authority (EFSA). (2014). Listeria EFSA explains zoonotic diseases. https://doi.org/10.2805/52269
European Food Safety Authority (EFSA). (2018a). Listeria infections increase in vulnerable groups. https://www.efsa.europa.eu/en/press/news/180124
European Food Safety Authority (EFSA). (2018b). Urgent scientific and technical assistance to provide recommendations for sampling and testing in the processing plants of frozen vegetables aiming at detecting Listeria monocytogenes. EFSA Supporting Publications, 15(7), 1445E. https://doi.org/10.2903/sp.efsa.2018.en-1445
European Food Safety Authority (EFSA). (2021). The European Union One Health 2020 Zoonoses Report. EFSA Journal, 19(12), e06971. https://doi.org/10.2903/J.EFSA.2021.6971
European Hygienic Engineering and Design Group (EHEDG). (2016). Cleaning validation in the food industry - General principles, Part 1. https://www.ehedg.org/guidelines/
European Hygienic Engineering and Design Group (EHEDG). (n.d.). EHEDG guidelines. https://www.ehedg.org/guidelines/
Fagerlund, A., Heir, E., Møretrø, T., & Langsrud, S. (2020). Listeria monocytogenes biofilm removal using different commercial cleaning agents. Molecules, 25(4), 792. https://doi.org/10.3390/MOLECULES25040792
Fagerlund, A., Langsrud, S., & Møretrø, T. (2020). In-depth longitudinal study of Listeria monocytogenes ST9 isolates from the meat processing industry: Resolving diversity and transmission patterns using whole-genome sequencing. Applied and Environmental Microbiology, 86(14), e00579-20. https://doi.org/10.1128/AEM.00579-20
Fagerlund, A., Langsrud, S., & Møretrø, T. (2021). Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Current Opinion in Food Science, 37, 171-178. https://doi.org/10.1016/J.COFS.2020.10.015
Fagerlund, A., Møretrø, T., Heir, E., Briandet, R., & Langsruda, S. (2017). Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Applied and Environmental Microbiology, 83(17), e01046-17. https://doi.org/10.1128/AEM.01046-17
Faille, C., Bénézech, T., Blel, W., Ronse, A., Ronse, G., Clarisse, M., & Slomianny, C. (2013). Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures. Food Microbiology, 33(2), 149-157. https://doi.org/10.1016/j.fm.2012.09.010
Faille, C., Cunault, C., Dubois, T., & Bénézech, T. (2018). Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innovative Food Science and Emerging Technologies, 46, 65-73. https://doi.org/10.1016/j.ifset.2017.10.002
Federal Agency for the Safety of the Food Chain (FASFC). (2019). Self-checking system. https://www.fasfc.be/control-system/self-checking-system
Federal Agency for the Safety of the Food Chain (FASFC). (2023). Autocontrole - Autocontrôle. https://www.favv-afsca.be/comites-nl/raadgevend/verslagenvergaderingen/_documents/B3_NL-FR_Presentatie.pdf
FEVIA, & Ghent University. (2023). Module GM4 Beheersing van omgevingspathogenen in voedingsindustrie-Aanvullende module bij de autocontrolegidsen-Fevia-UGent 2023. Author.
Fieseler, L., Doyscher, D., Loessner, M. J., & Schuppler, M. (2014). Acanthamoeba release compounds which promote growth of Listeria monocytogenes and other bacteria. Applied Microbiology and Biotechnology, 98(7), 3091-3097. https://doi.org/10.1007/S00253-014-5534-9
Food and Agriculture Organization (FAO), & World Health Organization (WHO). (2004). Risk assessment of Listeria monocytogenes in ready-to-eat foods. http://www.fao.org/es/esn
Food and Agriculture Organization (FAO), & World Health Organization (WHO). (2019). Joint FAO/WHO expert meeting in collaboration with OIE on foodborne antimicrobial resistance: Role of the environment, crops and biocides: Meeting report. https://www.who.int/publications/i/item/9789241516907
Food and Agriculture Organization (FAO), & World Health Organization (WHO). (2022). Listeria monocytogenes in ready-to-eat (RTE) food: Attribution, characterization and monitoring: Meeting report. https://www.who.int/publications/i/item/9789240034969
Food and Drug Administration (FDA). (2017). Control of Listeria monocytogenes in ready-to-eat foods: Guidance for industry draft guidance. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition.
Food Safety and Inspection Service (FSIS). (2015). Best practices guidance for controlling Listeria monocytogenes (Lm) in retail delicatessens. Author.
Gabriel, A. A., & Panaligan, D. C. (2020). Heat and chlorine resistance of a soil Acanthamoeba sp. cysts in water. Journal of Applied Microbiology, 129(2), 453-464. https://doi.org/10.1111/JAM.14600
Gao, Z., Daliri, E. B. M., Wang, J. U. N., Liu, D., Chen, S., Ye, X., & Ding, T. (2019). Inhibitory effect of lactic acid bacteria on foodborne pathogens: A review. Journal of Food Protection, 82(3), 441-453. https://doi.org/10.4315/0362-028X.JFP-18-303
Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Møretrø, T., Langsrud, S., Doulgeraki, A., Nychas, G. J., Kacániová, M., Czaczyk, K., Ölmez, H., & Simões, M. (2015). Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in Microbiology, 6, 841. https://doi.org/10.3389/fmicb.2015.00841
Gibson, H., Taylor, J. H., Hall, K. E., & Holah, J. T. (1999). Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. Journal of Applied Microbiology, 87(1), 41-48. https://doi.org/10.1046/j.1365-2672.1999.00790.x
Gillham, C. R., Fryer, P. J., Hasting, A. P. M., & Wilson, D. I. (2000). Enhanced cleaning of whey protein soils using pulsed flows. Journal of Food Engineering, 46(3), 199-209. https://doi.org/10.1016/S0260-8774(00)00083-2
González-Fandos, E., Sanz, J., García-Fernández, M. C., & García-Arias, M. T. (2005). Effectiveness of disinfectants used in the food industry on microorganisms of sanitary interest. Acta Alimentaria, 34(3), 253-258. https://doi.org/10.1556/AALIM.34.2005.3.7
Goormaghtigh, F., Fraikin, N., Putrinš, M., Hallaert, T., Hauryliuk, V., Garcia-Pino, A., Sjödin, A., Kasvandik, S., Udekwu, K., Tenson, T., Kaldalu, N., & van Melderen, L. (2018). Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. MBio, 9(3), 1-14. https://doi.org/10.1128/mBio.00640-18
Gourabathini, P., Brandl, M. T., Redding, K. S., Gunderson, J. H., & Berk, S. G. (2008). Interactions between food-borne pathogens and protozoa isolated from lettuce and spinach. American Society for Microbiology, 74(8), 2518-2525. https://doi.org/10.1128/AEM.02709-07
Griffith, C. (2005). Improving surface sampling and detection of contamination. In H. L. M. Lelieveld, M. A. Mostert, & J. Holah (Eds.), Handbook of hygiene control in the food industry (pp. 588-618). Elsevier Inc. https://doi.org/10.1533/9781845690533.3.588
Griffith, C. (2016). Surface sampling and the detection of contamination. In H. Lelieveld, J. Holah, & D. Gabrić (Eds.), Handbook of hygiene control in the food industry (2nd ed., pp. 673-696). Elsevier. https://doi.org/10.1016/B978-0-08-100155-4.00044-3
Griffith, C. J., Cooper, R. A., Gilmore, J., Davies, C., & Lewis, M. (2000). An evaluation of hospital cleaning regimes and standards. Journal of Hospital Infection, 45(1), 19-28. https://doi.org/10.1053/jhin.1999.0717
Hansen, T., Vogel, L., & Fonnesbech, B. (2011). Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products. International Journal of Food Microbiology, 146(1), 88-93. https://doi.org/10.1016/j.ijfoodmicro.2011.01.032
Harms, A., Brodersen, D. E., Mitarai, N., & Gerdes, K. (2018). Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell, 70(5), 768-784. https://doi.org/10.1016/J.MOLCEL.2018.01.003
Harms, A., Fino, C., Sørensen, M. A., Semsey, S., & Gerdes, K. (2017). Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. MBio, 8(6), 1-18. https://doi.org/10.1128/mBio.01964-17
Harvey, J., & Keenan, K. (2007). Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiology, 24(4), 380-392. https://www.sciencedirect.com/science/article/pii/S0740002006001365
Haubert, L., Zehetmeyr, M. L., & da Silva, W. P. (2019). Resistance to benzalkonium chloride and cadmium chloride in Listeria monocytogenes isolates from food and food-processing environments in southern Brazil. Canadian Journal of Microbiology, 65(6), 429-435. https://doi.org/10.1139/CJM-2018-0618
Hingston, P. A., Stea, E. C., Knøchel, S., & Hansen, T. (2013). Role of initial contamination levels, biofilm maturity and presence of salt and fat on desiccation survival of Listeria monocytogenes on stainless steel surfaces. Food Microbiology, 36(1), 46-56. https://doi.org/10.1016/J.FM.2013.04.011
Hoelzer, K., Pouillot, R., Gallagher, D., Silverman, M. B., Kause, J., & Dennis, S. (2012). Estimation of Listeria monocytogenes transfer coefficients and efficacy of bacterial removal through cleaning and sanitation. International Journal of Food Microbiology, 157(2), 267-277. https://doi.org/10.1016/j.ijfoodmicro.2012.05.019
Holah, J. (1995). Airborne microorganism levels in food processing environments (R&D Report No. 12). Campden & Chorleywood Food Research Association.
Holah, J. (1999). Effective microbiological sampling of food processing environments. Campden & Chorleywood Food Research Association.
Holah, J. T. (2008). The hygienic design of chilled food plants and equipment. In M. Brown (Ed.), Chilled foods: A comprehensive guide (3rd ed., pp. 262-303). Elsevier. https://doi.org/10.1533/9781845694883.2.262
Holah, J. T. (2014a). Cleaning and disinfection practices in food processing. In H. L. M. Lelieveld, J. T. Holah, & D. Napper (Eds.), Hygiene in food processing: Principles and practice (2nd ed., pp. 259-304). Elsevier. https://doi.org/10.1533/9780857098634.3.259
Holah, J. T. (2014b). Microbiological environmental sampling, records and record interpretation. In H. L. M. Lelieveld, J. T. Holah, & D. Napper (Eds.), Hygiene in food processing: Principles and practice (2nd ed., pp. 539-576). Elsevier. https://doi.org/10.1533/9780857098634.3.539
Holah, J. T., Taylor, J. H., Dawson, D. J., & Hall, K. E. (2002). Biocide use in the food industry and the disinfectant resistance of persistent strains of Listeria monocytogenes and Escherichia coli. Journal of Applied Microbiology, 92(1), 111-120. https://doi.org/10.1046/j.1365-2672.92.5s1.18.x
Hossain, M. I., Mizan, M. F. R., Ashrafudoulla, M., Nahar, S., Joo, H. J., Jahid, I. K., Park, S. H., Kim, K. S., & Ha, S. D. (2020). Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. LWT - Food Science and Technology, 118, 108864. https://doi.org/10.1016/J.LWT.2019.108864
Ibusquiza, P. S., Herrera, J. J. R., & Cabo, M. L. (2011). Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiology, 28(3), 418-425. https://doi.org/10.1016/j.fm.2010.09.014
Iñiguez-Moreno, M., Avila-Novoa, M. G., & Gutiérrez-Lomelí, M. (2018). Resistance of pathogenic and spoilage microorganisms to disinfectants in the presence of organic matter and their residual effect on stainless steel and polypropylene. Journal of Global Antimicrobial Resistance, 14, 197-201. https://doi.org/10.1016/J.JGAR.2018.04.010
Iñiguez-Moreno, M., Avila-Novoa, M. G., Iñiguez-Moreno, E., Guerrero-Medina, P. J., & Gutiérrez-Lomelí, M. (2017). Antimicrobial activity of disinfectants commonly used in the food industry in Mexico. Journal of Global Antimicrobial Resistance, 10, 143-147. https://doi.org/10.1016/J.JGAR.2017.05.013
Innovation Center for U.S. Dairy. (2018). Control of Listeria monocytogenes - Guidance for the U.S. Dairy Industry. https://www.usdairy.com/getmedia/aee7f5c2-b462-4f4f-a99d-870f53cb2ddc/control%20of%20listeria%20monocytogenes%20guidance%20for%20the%20us%20dairy%20industry.pdf.pdf
International Organization for Standardization (ISO). (2018). Sterilization of health care products - Vocabulary of terms used in sterilization and related equipment and process standards (ISO 11139:2018(en)). https://www.iso.org/obp/ui#iso:std:iso:11139:ed-1:v1:en
Jones, S. L., & Gibson, K. (2022). Temperature, time, and type, oh my! Key environmental factors impacting the recovery of Salmonella Typhimurium, Listeria monocytogenes, and Tulane virus from surfaces. Journal of Food Protection, 85(8), 1157-1165. https://doi.org/10.4315/JFP-22-057
Kaldalu, N., & Tenson, T. (2019). Slow growth causes bacterial persistence. Science Signaling, 12(592), 1167. https://doi.org/10.1126/scisignal.aay1167
Kampf, G. (2019). Antibiotic resistance can be enhanced in Gram-positive species by some biocidal agents used for disinfection. Antibiotics, 8(13), 1-15. https://doi.org/10.3390/antibiotics8010013
Kastbjerg, V. G., & Gram, L. (2009). Model systems allowing quantification of sensitivity to disinfectants and comparison of disinfectant susceptibility of persistent and presumed nonpersistent Listeria monocytogenes. Journal of Applied Microbiology, 106(5), 1667-1681. https://doi.org/10.1111/j.1365-2672.2008.04134.x
Kastbjerg, V. G., & Gram, L. (2012). Industrial disinfectants do not select for resistance in Listeria monocytogenes following long-term exposure. International Journal of Food Microbiology, 160(1), 11-15. https://doi.org/10.1016/j.ijfoodmicro.2012.09.009
Kim, K. Y., & Frank, J. F. (1994). Effect of growth nutrients on attachment of Listeria monocytogenes to stainless steel. Journal of Food Protection, 57(8), 720-724. https://doi.org/10.4315/0362-028x-57.8.720
Kim, M., Hatt, J. K., Weigand, M. R., Krishnan, R., Pavlostathis, S. G., & Konstantinidis, K. T. (2018). Genomic and transcriptomic insights into how bacteria withstand high concentrations of benzalkonium chloride biocides. Applied and Environmental Microbiology, 84(12), 1-15. https://doi.org/10.1128/AEM.00197-18
Kim, Y., Kim, H., Beuchat, L. R., & Ryu, J. H. (2019). Inhibition of Listeria monocytogenes using biofilms of non-pathogenic soil bacteria (Streptomyces spp.) on stainless steel under desiccated condition. Food Microbiology, 79, 61-65. https://doi.org/10.1016/J.FM.2018.11.007
Kocot, A. M., & Olszewska, M. A. (2019). Interaction and inactivation of Listeria and Lactobacillus cells in single and mixed species biofilms exposed to different disinfectants. Journal of Food Safety, 39(6), e12713. https://doi.org/10.1111/jfs.12713
Krysinski, E. P., Brown, L. J., & Marchisello, T. J. (1992). Effect of cleaners and sanitizers on Listeria monocytogenes attached to product contact surfaces. Journal of Food Protection, 55(4), 246-251. http://meridian.allenpress.com/jfp/article-pdf/55/4/246/2321831/0362-028x-55_4_246.pdf
Kuda, T., Shibata, G., Takahashi, H., & Kimura, B. (2015). Effect of quantity of food residues on resistance to desiccation of food-related pathogens adhered to a stainless steel surface. Food Microbiology, 46, 234-238. https://doi.org/10.1016/j.fm.2014.08.014
Kyoui, D., Hirokawa, E., Takahashi, H., Kuda, T., & Kimura, B. (2016). Effect of glucose on Listeria monocytogenes biofilm formation, and assessment of the biofilm's sanitation tolerance. Biofouling, 32(7), 815-826. https://doi.org/10.1080/08927014.2016.1198953
Lambrecht, E., Baré, J., Chavatte, N., Bert, W., Sabbe, K., & Houf, K. (2015). Protozoan cysts act as a survival niche and protective shelter for foodborne pathogenic bacteria. Applied and Environmental Microbiology, 81(16), 5604-5612. https://doi.org/10.1128/AEM.01031-15
Lambrecht, E., Baré, J., Sabbe, K., & Houf, K. (2017). Impact of Acanthamoeba cysts on stress resistance of Salmonella enterica Serovar Typhimurium, Yersinia enterocolitica 4/O:3, Listeria monocytogenes 1/2a, and Escherichia coli O:26. Applied Environmental Microbiology, 83(14), e00754-17. https://doi.org/10.1128/AEM.00754-17
Lambrecht, E., Baré, J., Van Damme, I., Bert, W., Sabbe, K., & Houf, K. (2013). Behavior of Yersinia enterocolitica in the presence of the bacterivorous Acanthamoeba castellanii. Applied and Environmental Microbiology, 79(20), 6407-6413. https://doi.org/10.1128/AEM.01915-13
Larsen, M. H., Dalmasso, M., Ingmer, H., Langsrud, S., Malakauskas, M., Mader, A., Møretrø, T., Možina, S. S., Rychli, K., Wagner, M., Wallace, R. J., Zentek, J., & Jordan, K. (2014). Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control, 44, 92-109. https://www.sciencedirect.com/science/article/pii/S0956713514001649
Laskowska, E., & Kuczyńska-Wiśnik, D. (2020). New insight into the mechanisms protecting bacteria during desiccation. Current Genetics, 66(2), 313-318. https://doi.org/10.1007/S00294-019-01036-Z
Lee, B. J., Gibson, O. R., Thake, C. D., Tipton, M., Hawley, J. A., & Cotter, J. D. (2019). Cross adaptation and cross tolerance in human health and disease. Frontiers in Physiology, 10, 1827. https://doi.org/10.3389/fphys.2018.01827
Lim, S. M., Lim, E. S., Kim, J. S., Paik, H. D., & Koo, O. K. (2020). Survival of foodborne pathogens on stainless steel soiled with different food residues. Food Science and Biotechnology, 29(5), 729-737. https://doi.org/10.1007/s10068-019-00705-6
Lindsay, D., Laing, S., Fouhy, K. I., Souhoka, L., Beaven, A. K., Soboleva, T. K., & Malakar, P. K. (2019). Quantifying the uncertainty of transfer of Cronobacter spp. between fomites and floors and touch points in dairy processing plants. Food Microbiology, 84, 103256. https://doi.org/10.1016/j.fm.2019.103256
Lourenço, A., Machado, H., & Brito, L. (2011). Biofilms of Listeria monocytogenes produced at 12°C either in pure culture or in co-culture with Pseudomonas aeruginosa showed reduced susceptibility to sanitizers. Journal of Food Science, 76(2), M143-M148. https://doi.org/10.1111/J.1750-3841.2010.02011.X
Lundén, J., Autio, T., Markkula, A., Hellström, S., & Korkeala, H. (2003). Adaptive and cross-adaptive responses of persistent and nonpersistent Listeria monocytogenes strains to disinfectants. International Journal of Food Microbiology, 82(3), 265-272. https://doi.org/10.1016/S0168-1605(02)00312-4
Lundén, J. M., Autio, T. J., & Korkeala, H. J. (2002). Transfer of persistent Listeria monocytogenes contamination between food-processing plants associated with a dicing machine. Journal of Food Protection, 65(7), 1129-1133. https://doi.org/10.4315/0362-028X-65.7.1129
Lundén, J. M., Miettinen, M. K., Autio, T. J., & Korkeala, H. J. (2000). Persistent Listeria monocytogenes strains show enhanced adherence to food contact surface after short contact times. Journal of Food Protection, 63(9), 1204-1207. https://doi.org/10.4315/0362-028X-63.9.1204
Luque-Sastre, L., Fox, E. M., Jordan, K., & Fanning, S. (2018). A comparative study of the susceptibility of Listeria species to sanitizer treatments when grown under planktonic and biofilm conditions. Journal of Food Protection, 81(9), 1481-1490. https://doi.org/10.4315/0362-028X.JFP-17-466
Luyckx, K., Dewulf, J., Van Weyenberg, S., Herman, L., Zoons, J., Vervaet, E., Heyndrickx, M., & De Reu, K. (2014). Comparison of sampling procedures and microbiological and non-microbiological parameters to evaluate cleaning and disinfection in broiler houses. Poultry Science, 94(4), 740-749. https://doi.org/10.3382/ps/pev019
Lyashchuk, Y. O., Novak, A. I., Kostrova, Y. B., Shibarshina, O. Y., Evdokimova, O. v., & Kanina, I. v. (2021). The study of persistence of microorganisms and parasites in food products. IOP Conference Series: Earth and Environmental Science, 640(6), 062002. https://doi.org/10.1088/1755-1315/640/6/062002
Maertens, H., De Reu, K., Meyer, E., Van Coillie, E., & Dewulf, J. (2019). Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry. BMC Veterinary Research, 15(1), 310. https://doi.org/10.1186/s12917-019-2044-0
Magalhães, R., Ferreira, V., Biscottini, G., Brandão, T. R. S., Almeida, G., & Teixeira, P. (2017). Biofilm formation by persistent and nonpersistent Listeria monocytogenes strains on abiotic surfaces. Acta Alimentaria, 46(1), 43-50. https://doi.org/10.1556/066.2017.46.1.6
Magalhães, R., Ferreira, V., Brandão, T. R. S., Palencia, R. C., Almeida, G., & Teixeira, P. (2016). Persistent and nonpersistent strains of Listeria monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers. Food Microbiology, 57, 103-108. https://doi.org/10.1016/j.fm.2016.02.005
Mah, T. F. C., & O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34-39. https://doi.org/10.1016/S0966-842X(00)01913-2
Mai, T. L., Sofyan, N. I., Fergus, J. W., Gale, W. F., & Conner, D. E. (2006). Attachment of Listeria monocytogenes to an austenitic stainless steel after welding and accelerated corrosion treatments. Journal of Food Protection, 69(7), 1527-1532.
Martínez-Suárez, J. v., Ortiz, S., & López-Alonso, V. (2016). Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Frontiers in Microbiology, 7, 638. https://doi.org/10.3389/fmicb.2016.00638
Meinersmann, R. J., Berrang, M. E., & Rigsby, L. L. (2020). Recoverability of Listeria monocytogenes after coculture with Tetrahymena pyriformis. Journal of Food Safety, 40(3), e12778. https://doi.org/10.1111/JFS.12778
Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K., & Hinrichs, W. L. J. (2017). How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. European Journal of Pharmaceutics and Biopharmaceutics, 114, 288-295. https://doi.org/10.1016/j.ejpb.2017.01.024
Meyer, B. (2006). Does microbial resistance to biocides create a hazard to food hygiene? International Journal of Food Microbiology, 112(3), 275-279. https://doi.org/10.1016/j.ijfoodmicro.2006.04.012
Meyer, B., & Cookson, B. (2010). Does microbial resistance or adaptation to biocides create a hazard in infection prevention and control? Journal of Hospital Infection, 76(3), 200-205. https://doi.org/10.1016/j.jhin.2010.05.020
Meyer, B., Morin, V. N., Rödger, H.-J., Holah, J., & Bird, C. (2010). Do European Standard Disinfectant tests truly simulate in-use microbial and organic soiling conditions on food preparation surfaces? Journal of Applied Microbiology, 108(4), 1344-1351. https://doi.org/10.1111/j.1365-2672.2009.04530.x
Minh, T., Ly, C., & Muller, H. E. (1990a). Ingested Listeria monocytogenes survive and multiply in protozoa. Journal of Medical Microbiology, 33(1), 51-54. https://doi.org/10.1099/00222615-33-1-51
Minh, T., Ly, C., & Muller, H. E. (1990b). Interactions of Listeria monocytogenes, Listeria seelegri, and Listeria innocua with protozoans. Journal of General and Applied Microbiology, 36(3), 143-150.
Moerman, F., Holah, J. T., & Steenaard, P. (2014). Hygienic practices for equipment maintenance. In H. L. M. Lelieveld, J. T. Holah, & D. Napper (Eds.), Hygiene in food processing: Principles and practice (2nd ed., pp. 384-407). Elsevier. https://doi.org/10.1533/9780857098634.3.384
Moore, G., & Griffith, C. (2007). Problems associated with traditional hygiene swabbing: The need for in-house standardization. Journal of Applied Microbiology, 103(4), 1090-1103. https://doi.org/10.1111/j.1365-2672.2007.03330.x
Møretrø, T., & Langsrud, S. (2004). Listeria monocytogenes : Biofilm formation and persistence in food-processing environments. Biofilms, 1(2), 107-121. https://doi.org/10.1017/s1479050504001322
Møretrø, T., & Langsrud, S. (2017). Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1022-1041. https://doi.org/10.1111/1541-4337.12283
Morita, T., Kitazawa, H., Iida, T., & Kamata, S. (2006). Prevention of Salmonella cross-contamination in an oilmeal manufacturing plant. Journal of Applied Microbiology, 101(2), 464-473. https://doi.org/10.1111/j.1365-2672.2006.02972.x
Nilsson, R. E., Ross, T., & Bowman, J. P. (2011). Variability in biofilm production by Listeria monocytogenes correlated to strain origin and growth conditions. International Journal of Food Microbiology, 150(1), 14-24. https://doi.org/10.1016/j.ijfoodmicro.2011.07.012
Noll, M., Trunzer, K., Vondran, A., Vincze, S., Dieckmann, R., al Dahouk, S., & Gold, C. (2020). Benzalkonium chloride induces a VBNC state in Listeria monocytogenes. Microorganisms, 8(2), 184. https://doi.org/10.3390/MICROORGANISMS8020184
Norwood, D. E., & Gilmour, A. (2001). The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as a function of temperature. Letters in Applied Microbiology, 33(4), 320-324. https://doi.org/10.1046/j.1472-765X.2001.01004.x
Ochiai, Y., Yamada, F., Mochizuki, M., Takano, T., Hondo, R., & Ueda, F. (2014). Biofilm formation under different temperature conditions by a single genotype of persistent Listeria monocytogenes strains. Journal of Food Protection, 77(1), 133-140. https://doi.org/10.4315/0362-028X.JFP-13-074
Olszewska, M. A., & Diez-Gonzalez, F. (2021). Characterization of binary biofilms of Listeria monocytogenes and Lactobacillus and their response to chlorine treatment. Frontiers in Microbiology, 12, 638933. https://doi.org/10.3389/FMICB.2021.638933
Overney, A., Jacques-André-Coquin, J., Ng, P., Carpentier, B., Guillier, L., & Firmesse, O. (2017). Impact of environmental factors on the culturability and viability of Listeria monocytogenes under conditions encountered in food processing plants. International Journal of Food Microbiology, 244, 74-81. https://doi.org/10.1016/j.ijfoodmicro.2016.12.012
Pan, Y., Breidt, F., & Kathariou, S. (2006). Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Applied and Environmental Microbiology, 72(12), 7711-7717. https://doi.org/10.1128/AEM.01065-06
Pang, X., Wong, C., Chung, H. J., & Yuk, H. G. (2019). Biofilm formation of Listeria monocytogenes and its resistance to quaternary ammonium compounds in a simulated salmon processing environment. Food Control, 98, 200-208. https://doi.org/10.1016/j.foodcont.2018.11.029
Pang, X., & Yuk, H. G. (2019). Effects of the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens on survival of biofilm cells under food-related stresses and transfer to salmon. Food Microbiology, 82, 142-150. https://doi.org/10.1016/j.fm.2019.02.002
Perni, S., Aldsworth, T. G., Jordan, S. J., Fernandes, I., Barbosa, M., Sol, M., Tenreiro, R. P., Chambel, L., Zilhão, I., Barata, B., Adrião, A., Leonor Faleiro, M., Andrew, P. W., & Shama, G. (2007). The resistance to detachment of dairy strains of Listeria monocytogenes from stainless steel by shear stress is related to the fluid dynamic characteristics of the location of isolation. International Journal of Food Microbiology, 116(3), 384-390. https://doi.org/10.1016/j.ijfoodmicro.2007.03.002
Piercey, M. J., Ells, T. C., Macintosh, A. J., & Truelstrup Hansen, L. (2017). Variations in biofilm formation, desiccation resistance and Benzalkonium chloride susceptibility among Listeria monocytogenes strains isolated in Canada. International Journal of Food Microbiology, 257, 254-261. https://doi.org/10.1016/J.IJFOODMICRO.2017.06.025
Poimenidou, S. V., Chrysadakou, M., Tzakoniati, A., Bikouli, V. C., Nychas, G. J., & Skandamis, P. N. (2016). Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds. International Journal of Food Microbiology, 237, 164-171. https://doi.org/10.1016/j.ijfoodmicro.2016.08.029
Pontes, M. H., & Groisman, E. A. (2019). Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Science Signaling, 12(592), eaax3938. https://doi.org/10.1126/scisignal.aax3938
Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiological Reviews, 58(4), 755-805. https://doi.org/10.1128/MR.58.4.755-805.1994
PROFEL. (2020). Hygiene guidelines for the control of Listeria monocytogenes in the production of quick-frozen vegetables. Author.
Puga, C., Dahdouh, E., SanJose, C., & Orgaz, B. (2018). Listeria monocytogenes colonizes Pseudomonas fluorescens biofilms and induces matrix over-production. Frontiers in Microbiology, 9, 1706. https://doi.org/10.3389/FMICB.2018.01706/BIBTEX
Puga, C., SanJose, C., & Orgaz, B. (2014). Spatial distribution of Listeria monocytogenes and Pseudomonas fluorescens in mixed biofilms. In E. C. Hambrick (Ed.), Listeria monocytogenes: Food sources, prevalence and management strategies (pp. 115-131). Nova Science Publishers. https://www.researchgate.net/profile/Carmen_Sanjose/publication/293072072_Spatial_distribution_of_listeria_monocytogenes_and_pseudomonas_fluorescens_in_mixed_biofilms/links/5b0da4e6a6fdcc80995969eb/Spatial-distribution-of-listeria-monocytogenes-and-pseudo
Puga, C., SanJose, C., & Orgaz, B. (2016). Biofilm development at low temperatures enhances Listeria monocytogenes resistance to chitosan. Food Control, 65, 143-151. https://doi.org/10.1016/j.foodcont.2016.01.012
Puga, C. H., Orgaz, B., & SanJose, C. (2016). Listeria monocytogenes impact on mature or old Pseudomonas fluorescens biofilms during growth at 4 and 20°C. Frontiers in Microbiology, 7, 134. https://doi.org/10.3389/fmicb.2016.00134
Raghu Nadhanan, R., & Thomas, C. J. (2014). Colpoda secrete viable Listeria monocytogenes within faecal pellets. Environmental Microbiology, 16(2), 396-404. https://doi.org/10.1111/1462-2920.12230
Ramisetty, B. C. M., Ghosh, D., Chowdhury, M. R., & Santhosh, R. S. (2016). What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Frontiers in Microbiology, 7, 1882. https://doi.org/10.3389/fmicb.2016.01882
Redfern, J., & Verran, J. (2017). Effect of humidity and temperature on the survival of Listeria monocytogenes on surfaces. Letters in Applied Microbiology, 64(4), 276-282. https://doi.org/10.1111/LAM.12714
Reij, M. W., & den Aantrekker, E. D. (2004). Recontamination as a source of pathogens in processed foods. International Journal of Food Microbiology, 91(1), 1-11. https://doi.org/10.1016/S0168-1605(03)00295-2
Riazi, S., & Matthews, K. R. (2011). Failure of foodborne pathogens to develop resistance to sanitizers following repeated exposure to common sanitizers. International Biodeterioration and Biodegradation, 65(2), 374-378. https://doi.org/10.1016/j.ibiod.2010.12.001
Rodríguez-Campos, D., Rodríguez-Melcón, C., Alonso-Calleja, C., & Capita, R. (2019). Persistent Listeria monocytogenes isolates from a poultry-processing facility form more biofilm but do not have a greater resistance to disinfectants than sporadic strains. Pathogens, 8(4), 250. https://doi.org/10.3390/pathogens8040250
Rodríguez-Melcón, C., Capita, R., Rodríguez-Jerez, J. J., Martínez-Suárez, J. v., & Alonso-Calleja, C. (2019). Effect of low doses of disinfectants on the biofilm-forming ability of Listeria monocytogenes. Foodborne Pathogens and Disease, 16(4), 262-268. https://doi.org/10.1089/fpd.2018.2472
Roedel, A., Dieckmann, R., Brendebach, H., Hammerl, J. A., Kleta, S., Noll, M., al Dahouk, S., & Vincze, S. (2019). Biocide-tolerant Listeria monocytogenes isolates from German food production plants do not show cross-resistance to clinically relevant antibiotics. Applied and Environmental Microbiology, 85(20), 1-15. https://doi.org/10.1128/AEM.01253-19
Salcedo-Sora, J. E., & Kell, D. B. (2020). A quantitative survey of bacterial persistence in the presence of antibiotics: Towards antipersister antimicrobial discovery. Antibiotics, 9(8), 1-36. https://doi.org/10.3390/ANTIBIOTICS9080508
Schäfer, D. F., Steffens, J., Barbosa, J., Zeni, J., Paroul, N., Valduga, E., Junges, A., Backes, G. T., & Cansian, R. L. (2017). Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse. LWT - Food Science and Technology, 86, 393-398. https://doi.org/10.1016/j.lwt.2017.08.024
Skowron, K., Wałecka-Zacharska, E., Grudlewska, K., Gajewski, P., Wiktorczyk, N., Wietlicka-Piszcz, M., Dudek, A., Skowron, K. J., & Gospodarek-Komkowska, E. (2019). Disinfectant susceptibility of biofilm formed by Listeria monocytogenes under selected environmental conditions. Microorganisms, 7(9), 280. https://doi.org/10.3390/MICROORGANISMS7090280
Smith, D. L. (2019). Global Food Safety Initiative scheme audit requirements regarding cleaning tool and utensil selection and maintenance - A review. Quality Assurance and Safety of Crops and Foods, 11(7), 603-611. https://doi.org/10.3920/QAS2018.1409
Somers, E. B., & Wong, A. C. L. (2004). Efficacy of two cleaning and sanitizing combinations on Listeria monocytogenes biofilms formed at low temperature on a variety of materials in the presence of ready-to-eat meat residue. Journal of Food Protection, 67(10), 2218-2229. http://meridian.allenpress.com/jfp/article-pdf/67/10/2218/1676080/0362-028x-67_10_2218.pdf
Stoller, A., Stevens, M., Stephan, R., & Guldimann, C. (2019). Characteristics of Listeria monocytogenes strains persisting in a meat processing facility over a 4-year period. Pathogens, 8(1), 32. https://doi.org/10.3390/pathogens8010032
Streufert, R. K., Keller, S. E., & Salazar, J. K. (2021). Relationship of growth conditions to desiccation tolerance of Salmonella enterica, Escherichia coli, and Listeria monocytogenes. Journal of Food Protection, 84(8), 1380-1384. https://doi.org/10.4315/JFP-21-077
Sutherland, I. W. (2001). Biofilm exopolysaccharides : A strong and sticky framework. Microbiology, 147(1), 3-9. https://doi.org/10.1099/00221287-147-1-3
Takahashi, H., Kuramoto, S., Miya, S., & Kimura, B. (2011). Desiccation survival of Listeria monocytogenes and other potential foodborne pathogens on stainless steel surfaces is affected by different food soils. Food Control, 22(3-4), 633-637. https://doi.org/10.1016/j.foodcont.2010.09.003
Uyttendaele, M., Vermeulen, A., Jacxsens, L., Debevere, J., Devlieghere, F., & de Loy-Hendrickx, A. (2018). Microbiological guidelines. die Keure.
Vaerewijck, M. J. M., Baré, J., Lambrecht, E., Sabbe, K., & Houf, K. (2014). Interactions of foodborne pathogens with free-living protozoa: Potential consequences for food safety. Comprehensive Reviews in Food Science and Food Safety, 13(5), 924-944. https://doi.org/10.1111/1541-4337.12100
Vaerewijck, M. J. M., Sabbe, K., Baré, J., & Houf, K. (2008). Microscopic and molecular studies of the diversity of free-living protozoa in meat-cutting plants. Applied and Environmental Microbiology, 74(18), 5741-5749. https://doi.org/10.1128/AEM.00980-08
Vaerewijck, M. J. M., Sabbe, K., Baré, J., & Houf, K. (2011). Occurrence and diversity of free-living protozoa on butterhead lettuce. International Journal of Food Microbiology, 147(2), 105-111. https://doi.org/10.1016/J.IJFOODMICRO.2011.03.015
van der Veen, S., & Abee, T. (2011). Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid. International Journal of Food Microbiology, 144(3), 421-431. https://doi.org/10.1016/j.ijfoodmicro.2010.10.029
van Walle, I., Björkman, J. T., Cormican, M., Dallman, T., Mossong, J., Moura, A., Pietzka, A., Ruppitsch, W., Takkinen, J., Mattheus, W., Christova, I., Maikanti-Charalampous, P., Karpíšková, R., Halbedel, S., Nielsen, E. M., Koolmeister, M., Mandilara, G., Torreblanca, R. A., Salmenlinna, S., … Grant, K. (2018). Retrospective validation of whole genome sequencing enhanced surveillance of listeriosis in Europe, 2010 to 2015. Eurosurveillance, 23(33), 1-11. https://doi.org/10.2807/1560-7917.ES.2018.23.33.1700798
Vasudevan, R. (2014). Biofilms: Microbial cities of scientific significance. Journal of Microbiology and Experimentation, 1(3), 84-98. https://doi.org/10.15406/jmen.2014.01.00014
Verghese, B., Lok, M., Wen, J., Alessandria, V., Chen, Y., Kathariou, S., & Knabel, S. (2011). comK prophage junction fragments as markers for Listeria monocytogenes genotypes unique to individual meat and poultry processing plants and a model for rapid niche-specific adaptation, biofilm formation, and persistence. Applied and Environmental Microbiology, 77(10), 3279-3292. https://doi.org/10.1128/AEM.00546-11
VMT-Food. (2019a). Offerman negeerde advies schoonmakers CSU over schoonmaken fabriek. Author.
VMT-Food. (2019b). Vleesfabriek Offerman reinigde machines niet correct. Author.
Vogel, B. F., Hansen, L. T., Mordhorst, H., & Gram, L. (2010). The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material. International Journal of Food Microbiology, 140(2-3), 192-200. https://doi.org/10.1016/j.ijfoodmicro.2010.03.035
Wimpenny, J., Manz, W., & Szewzyk, U. (2000). Heterogeneity in biofilms. FEMS Microbiology Reviews, 24(5), 661-671.
Wu, J., & Ponder, M. A. (2018). Evaluation of transfer rates of Salmonella from single-use gloves and sleeves to dehydrated pork jerky. Food Control, 84, 17-22. https://doi.org/10.1016/j.foodcont.2017.07.019
Xu, H., Lee, H. Y., & Ahn, J. (2011). Characteristics of biofilm formation by selected foodborne pathogens. Journal of Food Safety, 31(1), 91-97. https://doi.org/10.1111/j.1745-4565.2010.00271.x
Xu, Y., Nagy, A., Bauchan, G. R., Xia, X., & Nou, X. (2017). Enhanced biofilm formation in dual-species culture of Listeria monocytogenes and Ralstonia insidiosa. AIMS Microbiology, 3(4), 774-783. https://doi.org/10.3934/microbiol.2017.4.774
Yamakawa, T., Tomita, K., & Sawai, J. (2018). Characteristics of biofilms formed by co-culture of Listeria monocytogenes with Pseudomonas aeruginosa at low temperatures and their sensitivity to antibacterial substances. Biocontrol Science, 23(3), 107119.
Yu, T., Jiang, X., Zhang, Y., Ji, S., Gao, W., & Shi, L. (2018). Effect of benzalkonium chloride adaptation on sensitivity to antimicrobial agents and tolerance to environmental stresses in Listeria monocytogenes. Frontiers in Microbiology, 9, 2906. https://doi.org/10.3389/FMICB.2018.02906/BIBTEX
Zhao, T., Doyle, M. P., & Zhao, P. (2004). Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms. Applied and Environmental Microbiology, 70(7), 3996-4003. https://doi.org/10.1128/AEM.70.7.3996-4003.2004
Zhou, X., Elmose, J., & Call, D. R. (2007). Interactions between the environmental pathogen Listeria monocytogenes and a free-living protozoan (Acanthamoeba castellanii). Environmental Microbiology, 9(4), 913-922. https://doi.org/10.1111/j.1462-2920.2006.01213.x
Zoz, F., Grandvalet, C., Lang, E., Iaconelli, C., Gervais, P., Firmesse, O., Guyot, S., & Beney, L. (2017). Listeria monocytogenes ability to survive desiccation: Influence of serotype, origin, virulence, and genotype. International Journal of Food Microbiology, 248, 82-89. https://doi.org/10.1016/j.ijfoodmicro.2017.02.010
Zoz, F., Iaconelli, C., Lang, E., Iddir, H., Guyot, S., Grandvalet, C., Gervais, P., & Beney, L. (2016). Control of relative air humidity as a potential means to improve hygiene on surfaces: A preliminary approach with Listeria monocytogenes. PLoS ONE, 11(2), e0148418. https://doi.org/10.1371/journal.pone.0148418
CDC. (2023). PulseNet | PulseNet | CDC. https://www.cdc.gov/pulsenet/index.html
Schuppler, M. (2014). How the interaction of Listeria monocytogenes and Acanthamoeba spp. affects growth and distribution of the foodborne pathogen. Applied Microbiology and Biotechnology, 98(7), 2907-2916. https://doi.org/10.1007/s00253-014-5546-5

Auteurs

Tessa Tuytschaever (T)

Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium.

Katleen Raes (K)

Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium.

Imca Sampers (I)

Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium.

Articles similaires

Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol
Female Biofilms Animals Lactobacillus Mice

Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents.

Doris Crnčević, Alma Ramić, Andreja Radman Kastelic et al.
1.00
Humans Microbial Sensitivity Tests Anti-Bacterial Agents Biofilms Quinuclidines
Biofilms Horses Animals Escherichia coli Mesenchymal Stem Cells

Classifications MeSH