Validation of the Idylla GeneFusion assay to detect fusions and MET exon-skipping in non-small cell lung cancers.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 08 2023
09 08 2023
Historique:
received:
07
03
2023
accepted:
30
07
2023
medline:
11
8
2023
pubmed:
10
8
2023
entrez:
9
8
2023
Statut:
epublish
Résumé
Gene fusions and MET exon skipping drive oncogenesis in 8-9% and 3% of non-small cell lung cancers (NSCLC) respectively. Their detection are essential for the management of patients since they confer sensitivity to specific targeted therapies with significant clinical benefit over conventional chemotherapy. Immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) account for historical reference techniques however molecular-based technologies (RNA-based sequencing and RT-PCR) are emerging as alternative or complementary methods. Here, we evaluated the analytical performance of the fully-automated RT-PCR Idylla GeneFusion assay compared to reference methods using 35 fixed NSCLC samples. Idylla demonstrated overall agreement, sensitivity and specificity of 100% compared to RNASeq. Interestingly, it succeeded in retrieving 10 out of 11 samples with inconclusive results due to insufficient RNA quality for sequencing. Idylla showed an overall agreement, sensitivity and specificity of 90.32%, 91.67% and 89.47% compared to IHC/FISH respectively. Using commercial standards, the limit of detection of the Idylla system for the most frequent fusions and exon skipping ranges between 5 and 10 ng RNA input. These results support that the Idylla assay is a reliable and rapid option for the detection of these alterations, however a particular attention is needed for the interpretation of the expression imbalance.
Identifiants
pubmed: 37558711
doi: 10.1038/s41598-023-39749-4
pii: 10.1038/s41598-023-39749-4
pmc: PMC10412571
doi:
Substances chimiques
RNA
63231-63-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12909Informations de copyright
© 2023. Springer Nature Limited.
Références
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
doi: 10.3322/caac.21660
pubmed: 33538338
Sher, T., Dy, G. K. & Adjei, A. A. Small cell lung cancer. Mayo Clin. Proc. 83, 355–367 (2008).
doi: 10.4065/83.3.355
pubmed: 18316005
Nicholson, A. G. et al. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol. 17, 362–387 (2022).
doi: 10.1016/j.jtho.2021.11.003
pubmed: 34808341
Travis, W. D. et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 10, 1243–1260 (2015).
Arbour, K. C. & Riely, G. J. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: A review. JAMA 322, 764–774 (2019).
doi: 10.1001/jama.2019.11058
pubmed: 31454018
Hendriks, L. E. et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. (2023).
Farago, A. F. & Azzoli, C. G. Beyond ALK and ROS1: RET, NTRK, EGFR and BRAF gene rearrangements in non-small cell lung cancer. Transl. Lung Cancer Res. 6, 550–559 (2017).
doi: 10.21037/tlcr.2017.08.02
pubmed: 29114471
pmcid: 5653525
Forsythe, A. et al. A systematic review and meta-analysis of neurotrophic tyrosine receptor kinase gene fusion frequencies in solid tumors. Ther. Adv. Med. Oncol. 12, 1758835920975613 (2020).
doi: 10.1177/1758835920975613
pubmed: 33425024
pmcid: 7758559
Skoulidis, F. & Heymach, J. V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 19, 495–509 (2019).
doi: 10.1038/s41568-019-0179-8
pubmed: 31406302
pmcid: 7043073
Gendarme, S., Bylicki, O., Chouaid, C. & Guisier, F. ROS-1 fusions in non-small-cell lung cancer: Evidence to date. Curr. Oncol. 29, 641–658 (2022).
doi: 10.3390/curroncol29020057
pubmed: 35200557
pmcid: 8870726
Palmirotta, R. et al. Chapter 31—Gene fusion in NSCLC: ALK, ROS1, RET, and related treatments. in Oncogenomics (eds. Dammacco, F. & Silvestris, F.). 443–464. https://doi.org/10.1016/B978-0-12-811785-9.00031-4 (Academic Press, 2019).
Ou, S.-H.I., Zhu, V. W. & Nagasaka, M. Catalog of 5’ fusion partners in ALK-positive NSCLC circa 2020. JTO Clin. Res. Rep. 1, 100015 (2020).
pubmed: 34589917
pmcid: 8474466
Ou, S.-H.I. & Nagasaka, M. A catalog of 5’ fusion partners in ROS1-positive NSCLC circa 2020. JTO Clin. Res. Rep. 1, 100048 (2020).
pubmed: 34589944
pmcid: 8474457
Ou, S.-H.I. & Zhu, V. W. Catalog of 5′ fusion partners in RET+ NSCLC circa 2020. JTO Clin. Res. Rep. 1, 100037 (2020).
pubmed: 34589933
pmcid: 8474217
Fujino, T., Suda, K. & Mitsudomi, T. Lung cancer with MET exon 14 skipping mutation: Genetic feature, current treatments, and future challenges. Lung Cancer Targets Ther. 12, 35–50 (2021).
doi: 10.2147/LCTT.S269307
Drilon, A. et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med. 26, 47–51 (2020).
doi: 10.1038/s41591-019-0716-8
pubmed: 31932802
pmcid: 8500676
Paik, P. K. et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N. Engl. J. Med. 383, 931–943 (2020).
doi: 10.1056/NEJMoa2004407
pubmed: 32469185
pmcid: 8422679
Wolf, J. et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N. Engl. J. Med. 383, 944–957 (2020).
doi: 10.1056/NEJMoa2002787
pubmed: 32877583
Guo, R. et al. MET IHC is a poor screen for MET amplification or MET exon 14 mutations in lung adenocarcinomas: Data from a Tri-Institutional Cohort of the Lung Cancer Mutation Consortium. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 14, 1666–1671 (2019).
Mignard, X. et al. c-MET overexpression as a poor predictor of MET amplifications or exon 14 mutations in lung sarcomatoid carcinomas. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 13, 1962–1967 (2018).
Reale, M. L., Bertaglia, V., Listì, A., Novello, S. & Passiglia, F. Molecular testing and treatment strategies in RET-rearranged NSCLC patients: Stay on target to look forward. J. Mol. Pathol. 3, 24–37 (2022).
doi: 10.3390/jmp3010003
Go, H. et al. Diagnostic method for the detection of KIF5B-RET transformation in lung adenocarcinoma. Lung Cancer 82, 44–50 (2013).
doi: 10.1016/j.lungcan.2013.07.009
pubmed: 23932363
Sumbal, S. et al. Circulating tumor DNA in blood: Future genomic biomarkers for cancer detection. Exp. Hematol. 65, 17–28 (2018).
doi: 10.1016/j.exphem.2018.06.003
pubmed: 29940219
Gilson, P. et al. Evaluation of KRAS, NRAS and BRAF hotspot mutations detection for patients with metastatic colorectal cancer using direct DNA pipetting in a fully-automated platform and next-generation sequencing for laboratory workflow optimisation. PLoS ONE 14, e0219204 (2019).
doi: 10.1371/journal.pone.0219204
pubmed: 31265477
pmcid: 6605656
Pécriaux, A. et al. Detection of microsatellite instability in a panel of solid tumours with the Idylla MSI test using extracted DNA. J. Clin. Pathol. 74, 36–42 (2021).
doi: 10.1136/jclinpath-2020-206581
pubmed: 32513848
Grant, J., Stanley, A., Balbi, K., Gerrard, G. & Bennett, P. Performance evaluation of the biocartis Idylla EGFR mutation test using pre-extracted DNA from a cohort of highly characterised mutation positive samples. J. Clin. Pathol. https://doi.org/10.1136/jclinpath-2020-207338 (2021).
doi: 10.1136/jclinpath-2020-207338
pubmed: 34583947
Boppudi, S. M., Scheil-Bertram, S., Faust, E., Annamneedi, A. & Fisseler-Eckhoff, A. Assessing and evaluating the scope and constraints of Idylla molecular assays by using different source materials in routine diagnostic settings. Int. J. Mol. Sci. 23, 12515 (2022).
doi: 10.3390/ijms232012515
pubmed: 36293374
pmcid: 9604085
Wei, Q., Eltoum, I. A., Mackinnon, A. C. & Harada, S. Performance of Idylla KRAS assay on extracted DNA and de-stained cytology smears: Can we rescue small sample?. Ann. Diagn. Pathol. 60, 152023 (2022).
doi: 10.1016/j.anndiagpath.2022.152023
pubmed: 35961282
Khalifa, E. et al. Idylla EGFR assay on extracted DNA: Advantages, limits and place in molecular screening according to the latest guidelines for non-small-cell lung cancer (NSCLC) patients. J. Clin. Pathol. https://doi.org/10.1136/jcp-2022-208325 (2022).
doi: 10.1136/jcp-2022-208325
pubmed: 35820776
Leone, A. et al. Robust performance of the novel research-use-only Idylla GeneFusion assay using a diverse set of pathological samples with a proposed 1-day workflow for advanced NSCLC evaluation. Cancers 15, 292 (2022).
doi: 10.3390/cancers15010292
pubmed: 36612287
pmcid: 9818630
Childress, M. A. et al. ALK fusion partners impact response to ALK inhibition: Differential effects on sensitivity, cellular phenotypes, and biochemical properties. Mol. Cancer Res. 16, 1724–1736 (2018).
doi: 10.1158/1541-7786.MCR-18-0171
pubmed: 30002191
pmcid: 6214753
Xiang, Y. et al. Therapeutic advances of rare ALK fusions in non-small cell lung cancer. Curr. Oncol. Tor. Ont 29, 7816–7831 (2022).
doi: 10.3390/curroncol29100618
Lu, S. & Li, Z. Differential crizotinib efficacy among ROS1 fusion partners in ROS1-positive non-small cell lung cancer. J. Clin. Oncol. 35, 9067–9067 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.9067
Hofman, V. et al. Ultrafast gene fusion assessment for nonsquamous NSCLC. JTO Clin. Res. Rep. 4, 100457 (2023).
pubmed: 36718140
Buglioni, A., Caffes, P. L., Hessler, M. G., Mansfield, A. S. & Lo, Y.-C. Clinical utility validation of an automated ultrarapid gene fusion assay for NSCLC. JTO Clin. Res. Rep. 3, 100434 (2022).
pubmed: 36536899
pmcid: 9758522
Depoilly, T. et al. Multicenter evaluation of the Idylla GeneFusion in non-small-cell lung cancer. J. Mol. Diagn. JMD 24, 1021–1030 (2022).
doi: 10.1016/j.jmoldx.2022.05.004
pubmed: 35718095
Sorber, L. et al. NTRK gene fusion detection in a pan-cancer setting using the Idylla GeneFusion assay. J. Mol. Diagn. JMD 24, 750–759 (2022).
doi: 10.1016/j.jmoldx.2022.03.014
pubmed: 35550184
Marchetti, A. et al. ALK protein analysis by IHC staining after recent regulatory changes: A comparison of two widely used approaches, revision of the literature, and a new testing algorithm. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 11, 487–495 (2016).
Lindeman, N. I. et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 142, 321–346 (2018).
doi: 10.5858/arpa.2017-0388-CP
pubmed: 29355391
Testing ROS1 dans les CBNPC—Recommandations SFP-AFAQAP. https://www.afaqap.fr/testing-ros1-dans-les-cbnpc-recommandations-sfp-afaqap-aout-2018 (2018).
Testing ALK dans les CBNPC—Recommandations SFP-AFAQAP 2017. https://www.afaqap.fr/testing-alk-dans-les-cbnpc-recommandations-sfp-afaqap-2017-1 (2017).
Wilson, E. B. Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 22, 209–212 (1927).
doi: 10.1080/01621459.1927.10502953
Newcombe, R. G. & Altman, D. G. Proportions and their differences. in Statistics with Confidence: Confidence Intervals and Statistical Guidelines. 45–57 (BMJ Books, 2000).