Exon-intron split analysis reveals posttranscriptional regulatory signals induced by high and low n-6/n-3 polyunsaturated fatty acid ratio diets in piglets.
Exon–intron split analysis
PUFA
messenger RNA
microRNA
piglets
Journal
Journal of animal science
ISSN: 1525-3163
Titre abrégé: J Anim Sci
Pays: United States
ID NLM: 8003002
Informations de publication
Date de publication:
03 Jan 2023
03 Jan 2023
Historique:
received:
06
05
2023
accepted:
08
08
2023
medline:
18
9
2023
pubmed:
10
8
2023
entrez:
10
8
2023
Statut:
ppublish
Résumé
Polyunsaturated fatty acids (PUFA), such as omega-6 (n-6) and omega-3 (n-3), play a vital role in nutrient metabolism, inflammatory response, and gene regulation. microRNAs (miRNA), which can potentially degrade targeted messenger RNAs (mRNA) and/or inhibit their translation, might play a relevant role in PUFA-related changes in gene expression. Although differential expression analyses can provide a comprehensive picture of gene expression variation, they are unable to disentangle when in the mRNA life cycle the regulation of expression is taking place, including any putative functional miRNA-driven repression. To capture this, we used an exon-intron split analysis (EISA) approach to account for posttranscriptional changes in response to extreme values of n-6/n-3 PUFA ratio. Longissimus dorsi muscle samples of male and female piglets from sows fed with n-6/n-3 PUFA ratio of 13:1 (SOY) or 4:1 (LIN), were analyzed in a bidirectional contrast (LIN vs. SOY, SOY vs. LIN). Our results allowed the identification of genes showing strong posttranscriptional downregulation signals putatively targeted by significantly upregulated miRNA. Moreover, we identified genes primarily involved in the regulation of lipid-related metabolism and immune response, which may be associated with the pro- and anti-inflammatory functions of the n-6 and n-3 PUFA, respectively. EISA allowed us to uncover regulatory networks complementing canonical differential expression analyses, thus providing a more comprehensive view of muscle metabolic changes in response to PUFA concentration. The relationship between dietary lipids, such as omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and gene expression regulation was explored in piglet muscle. While these PUFA can influence nutrient metabolism and inflammatory response, small regulatory molecules called microRNAs (miRNA) can also influence the activity of genes. In this experiment, we used a computational approach dubbed exon–intron split analysis (EISA) to fully understand the role of miRNA in this context and how the genes and miRNA respond to changes in PUFA levels. Our findings demonstrated that some genes involved in lipid metabolism and immune response were affected by different PUFA concentrations and that EISA provides a more comprehensive view of how genes are regulated throughout their life cycle.
Autres résumés
Type: plain-language-summary
(eng)
The relationship between dietary lipids, such as omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and gene expression regulation was explored in piglet muscle. While these PUFA can influence nutrient metabolism and inflammatory response, small regulatory molecules called microRNAs (miRNA) can also influence the activity of genes. In this experiment, we used a computational approach dubbed exon–intron split analysis (EISA) to fully understand the role of miRNA in this context and how the genes and miRNA respond to changes in PUFA levels. Our findings demonstrated that some genes involved in lipid metabolism and immune response were affected by different PUFA concentrations and that EISA provides a more comprehensive view of how genes are regulated throughout their life cycle.
Identifiants
pubmed: 37561402
pii: 7240564
doi: 10.1093/jas/skad271
pmc: PMC10503648
pii:
doi:
Substances chimiques
Fatty Acids, Unsaturated
0
Fatty Acids, Omega-3
0
MicroRNAs
0
RNA, Messenger
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : European Union Horizon 2020 Research and Innovation programme
ID : H2020-MSCA-ITN-2017-EJD
Organisme : Marie Skłodowska-Curie Innovative Training Networks
ID : 765423
Organisme : Spanish Ministerio de Ciencia e Innovación
Organisme : European Regional Development Fund
ID : AGL2017-82641-R
Organisme : Spanish Ministerio de Economía y Competitividad
ID : CEX2019-000902-S
Organisme : Centre for Research in Agricultural Genomics (CRAG
Organisme : programmes of Centres de Recerca de Catalunya
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science.
Références
Bioinformatics. 2009 Apr 15;25(8):1091-3
pubmed: 19237447
Animal. 2012 Feb;6(2):262-70
pubmed: 22436184
Gene. 2021 Feb 5;768:145308
pubmed: 33197517
Proc Nutr Soc. 2014 Feb;73(1):87-95
pubmed: 24308374
Mol Immunol. 2022 Jan;141:21-32
pubmed: 34785326
Mol Med Rep. 2015 Jun;11(6):4149-57
pubmed: 25672643
Bioorg Chem. 2006 Apr;34(2):66-76
pubmed: 16464485
Cell Death Dis. 2017 Aug 24;8(8):e3008
pubmed: 28837146
Nat Biotechnol. 2015 Jul;33(7):722-9
pubmed: 26098447
Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162
pubmed: 30423142
J Lipid Res. 2022 Oct;63(10):100267
pubmed: 36028048
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Adv Exp Med Biol. 2018;1087:81-94
pubmed: 30259359
Sci Rep. 2019 Sep 20;9(1):13634
pubmed: 31541165
Inflammation. 2015 Apr;38(2):534-45
pubmed: 24993153
Genome Biol. 2009;10(3):R25
pubmed: 19261174
Animals (Basel). 2020 Nov 05;10(11):
pubmed: 33167599
Front Microbiol. 2015 Mar 03;6:141
pubmed: 25784899
J Mol Neurosci. 2001 Apr-Jun;16(2-3):273-8; discussion 279-84
pubmed: 11478382
Biol Sex Differ. 2019 Nov 27;10(1):52
pubmed: 31775872
Molecules. 2022 May 04;27(9):
pubmed: 35566276
Endocr J. 2017 Jun 29;64(6):571-579
pubmed: 28502923
CNS Neurosci Ther. 2019 Jul;25(7):887-902
pubmed: 31197948
Nat Commun. 2015 Oct 05;6:8523
pubmed: 26436920
J Korean Med Sci. 2010 Jun;25(6):930-7
pubmed: 20514317
J Lipid Res. 2012 Aug;53(8):1679-89
pubmed: 22556214
Pathol Res Pract. 2022 Sep;237:154032
pubmed: 35914373
Nat Biotechnol. 2019 Aug;37(8):907-915
pubmed: 31375807
Gigascience. 2020 Jun 1;9(6):
pubmed: 32543654
Reprod Biol. 2021 Dec;21(4):100544
pubmed: 34454307
Calif Agric (Berkeley). 2011 Jul;65(3):106-111
pubmed: 24860193
Adv Nutr. 2012 Mar 01;3(2):127-34
pubmed: 22516720
Elife. 2021 May 13;10:
pubmed: 33982659
Sci Rep. 2015 Jun 29;5:11765
pubmed: 26119563
Genome Res. 2017 Feb;27(2):234-245
pubmed: 28148562
BMC Genomics. 2012 Oct 11;13:547
pubmed: 23051667
Mol Ther Oncolytics. 2020 Apr 07;17:267-277
pubmed: 32368615
J Clin Endocrinol Metab. 2010 May;95(5):2418-25
pubmed: 20215397
Front Immunol. 2021 Jul 27;12:676141
pubmed: 34386002
Anim Genet. 2022 Oct;53(5):613-626
pubmed: 35811409
Cell Physiol Biochem. 2019;52(4):681-695
pubmed: 30921507
Genome Biol. 2010;11(3):R25
pubmed: 20196867
J Biol Chem. 2008 Nov 21;283(47):32660-8
pubmed: 18815128
Nat Rev Immunol. 2016 Oct;16(10):626-38
pubmed: 27546235
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Cell. 2018 Mar 22;173(1):20-51
pubmed: 29570994
BMC Genomics. 2018 Nov 1;19(1):791
pubmed: 30384851
FEBS J. 2023 May;290(10):2508-2524
pubmed: 35247033
Oncogene. 2022 Aug;41(33):4018-4027
pubmed: 35821281
Front Pharmacol. 2019 Aug 29;10:940
pubmed: 31555130
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
BMC Biol. 2017 Feb 7;15(1):7
pubmed: 28173793
PLoS One. 2023 May 4;18(5):e0283231
pubmed: 37141193
PLoS One. 2017 Dec 21;12(12):e0190152
pubmed: 29267363
Nat Rev Genet. 2008 Feb;9(2):102-14
pubmed: 18197166
Am J Physiol Renal Physiol. 2012 Jul 15;303(2):F165-79
pubmed: 22189947
Elife. 2020 Dec 21;9:
pubmed: 33346730
Sci Rep. 2018 Dec 5;8(1):17650
pubmed: 30518766
Protein Sci. 2022 Apr;31(4):787-796
pubmed: 34913532
Lab Invest. 2021 Jul;101(7):921-934
pubmed: 33824421
Hum Mol Genet. 2017 Aug 15;26(16):3081-3093
pubmed: 28505249
Nucleic Acids Res. 2019 Sep 19;47(16):8606-8619
pubmed: 31372646
Physiol Genomics. 2018 Aug 1;50(8):580-589
pubmed: 29727591
Kidney Blood Press Res. 2021;46(6):734-740
pubmed: 34644709
Cell Metab. 2008 Dec;8(6):468-81
pubmed: 19041763
Biostatistics. 2014 Jul;15(3):413-26
pubmed: 24398039
Prog Lipid Res. 2008 Mar;47(2):147-55
pubmed: 18198131
Obesity (Silver Spring). 2012 Jul;20(7):1394-402
pubmed: 22318315
Clin Immunol. 2016 Mar;164:10-20
pubmed: 26794910
CNS Neurosci Ther. 2019 Sep;25(9):965-975
pubmed: 31180187
Front Behav Neurosci. 2022 Jul 25;16:929878
pubmed: 35957920
Am J Pathol. 2019 Feb;189(2):283-294
pubmed: 30448401
Front Genet. 2021 Jun 02;12:649015
pubmed: 34149800
Cell Biosci. 2013 Nov 24;3(1):45
pubmed: 24268103
Commun Biol. 2020 Aug 28;3(1):473
pubmed: 32859990
Prostaglandins Leukot Essent Fatty Acids. 2016 Oct;113:33-39
pubmed: 27720038
J Anim Sci Biotechnol. 2020 Jan 17;11:10
pubmed: 31969983
Biochim Biophys Acta. 2011 Jan;1814(1):210-22
pubmed: 20869469
J Anim Sci Biotechnol. 2021 Aug 20;12(1):100
pubmed: 34419151
Brief Bioinform. 2019 Nov 27;20(6):2044-2054
pubmed: 30099484
Cancer Metastasis Rev. 2013 Jun;32(1-2):201-10
pubmed: 23090260
PLoS One. 2018 Apr 17;13(4):e0195532
pubmed: 29664927