Reducing Bias and Quantifying Uncertainty in Fluorescence Produced by PCR.
Real-time polymerase chain reaction
Stochastic branching process
Uncertainty quantification
Journal
Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404
Informations de publication
Date de publication:
14 08 2023
14 08 2023
Historique:
received:
16
11
2022
accepted:
20
06
2023
medline:
15
8
2023
pubmed:
14
8
2023
entrez:
13
8
2023
Statut:
epublish
Résumé
We present a new approach for relating nucleic-acid content to fluorescence in a real-time Polymerase Chain Reaction (PCR) assay. By coupling a two-type branching process for PCR with a fluorescence analog of Beer's Law, the approach reduces bias and quantifies uncertainty in fluorescence. As the two-type branching process distinguishes between complementary strands of DNA, it allows for a stoichiometric description of reactions between fluorescent probes and DNA and can capture the initial conditions encountered in assays targeting RNA. Analysis of the expected copy-number identifies additional dynamics that occur at short times (or, equivalently, low cycle numbers), while investigation of the variance reveals the contributions from liquid volume transfer, imperfect amplification, and strand-specific amplification (i.e., if one strand is synthesized more efficiently than its complement). Linking the branching process to fluorescence by the Beer's Law analog allows for an a priori description of background fluorescence. It also enables uncertainty quantification (UQ) in fluorescence which, in turn, leads to analytical relationships between amplification efficiency (probability) and limit of detection. This work sets the stage for UQ-PCR, where both the input copy-number and its uncertainty are quantified from fluorescence kinetics.
Identifiants
pubmed: 37574503
doi: 10.1007/s11538-023-01182-z
pii: 10.1007/s11538-023-01182-z
pmc: PMC10423706
doi:
Substances chimiques
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
83Informations de copyright
© 2023. The Author(s).
Références
Anal Chem. 2007 Nov 15;79(22):8471-5
pubmed: 17929880
Biomol Detect Quantif. 2019 Feb 12;17:100077
pubmed: 30805297
Adv Clin Chem. 2005;40:219-59
pubmed: 16355924
Bioinformatics. 2022 Feb 7;38(5):1336-1343
pubmed: 34908126
Life (Basel). 2021 May 29;11(6):
pubmed: 34072308
J Appl Microbiol. 2014 Jan;116(1):1-13
pubmed: 24119073
Anal Chem. 2015 Feb 3;87(3):1889-95
pubmed: 25582662
Methods. 2013 Jan;59(1):32-46
pubmed: 22975077
Biophys J. 2005 Jul;89(1):374-83
pubmed: 15863482
J Comput Biol. 1995 Spring;2(1):63-86
pubmed: 7497121
Anal Chem. 2010 Feb 15;82(4):1546-50
pubmed: 20085301
Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12947-52
pubmed: 8917524
J Comput Biol. 2005 Oct;12(8):1047-64
pubmed: 16241897
Mikrochim Acta. 2014;181(13-14):1689-1696
pubmed: 25253910
J Comput Biol. 1995 Spring;2(1):49-61
pubmed: 7497120
Int J Mol Sci. 2021 Feb 28;22(5):
pubmed: 33671091
Nucleic Acids Res. 2012 Jan;40(2):e10
pubmed: 22102586
BMC Bioinformatics. 2008 Jul 30;9:326
pubmed: 18667053
Biophys J. 1996 Jul;71(1):101-8
pubmed: 8804593
Anal Bioanal Chem. 2003 Aug;376(8):1160-7
pubmed: 12739098
Clin Chem. 2015 Jan;61(1):202-12
pubmed: 25361949
Arch Biochem Biophys. 2003 Oct 1;418(1):63-70
pubmed: 13679084
Nucleic Acids Res. 2015 Dec 2;43(21):e143
pubmed: 26187991
PLoS One. 2010 Aug 30;5(8):e12355
pubmed: 20814578
Forensic Sci Int Genet. 2007 Mar;1(1):69-74
pubmed: 19083730
Nucleic Acids Res. 2003 Jul 15;31(14):e73
pubmed: 12853650
Nucleic Acids Res. 2003 Oct 15;31(20):e122
pubmed: 14530455
Int J Food Microbiol. 2002 Jun 25;76(3):207-14
pubmed: 12051477
Nucleic Acids Res. 2009 Apr;37(6):e45
pubmed: 19237396
Anal Biochem. 2002 Mar 1;302(1):52-9
pubmed: 11846375