In-Cell Western Assay in Ferroptosis.
Ferroptosis
High-throughput
In-Cell Western assay
Protein expression
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
15
8
2023
pubmed:
14
8
2023
entrez:
14
8
2023
Statut:
ppublish
Résumé
Ferroptosis is a regulated form of cell death caused by the excessive accumulation of iron-dependent lipid peroxidation. It has been implicated in various pathological processes and diseases, and its modulation involves multiple proteins associated with iron and lipid metabolism. To better understand these mechanisms and monitor the ferroptosis process, there is a need for reliable and high-throughput methods to evaluate variations in protein expression levels. In-Cell Western assays provide a simple and rapid assay method for detecting biomarkers and signaling proteins in whole cells using antibodies. This assay involves seeding cells in microtiter plates, followed by fixation/permeabilization and subsequent labeling with primary antibodies and infrared-conjugated secondary antibodies. In this chapter, we introduce the protocol for the In-Cell Western assay for detecting intracellular proteins during ferroptosis.
Identifiants
pubmed: 37578704
doi: 10.1007/978-1-0716-3433-2_14
doi:
Substances chimiques
Reactive Oxygen Species
0
Iron
E1UOL152H7
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
157-163Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541
pubmed: 29362479
pmcid: 5864239
doi: 10.1038/s41418-017-0012-4
Tang D, Kang R, Berghe TV et al (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364
pubmed: 30948788
pmcid: 6796845
doi: 10.1038/s41422-019-0164-5
Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072
pubmed: 22632970
pmcid: 3367386
doi: 10.1016/j.cell.2012.03.042
Xie Y, Hou W, Song X et al (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379
pubmed: 26794443
pmcid: 5072448
doi: 10.1038/cdd.2015.158
Liu J, Kang R, Tang D (2022) Signaling pathways and defense mechanisms of ferroptosis. FEBS J 289:7038–7050
pubmed: 34092035
doi: 10.1111/febs.16059
Chen X, Comish PB, Tang D et al (2021) Characteristics and biomarkers of Ferroptosis. Front Cell Dev Biol 9:637162
pubmed: 33553189
pmcid: 7859349
doi: 10.3389/fcell.2021.637162
Chen X, Kang R, Kroemer G et al (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18:280–296
pubmed: 33514910
doi: 10.1038/s41571-020-00462-0
Tang D, Chen X, Kang R et al (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125
pubmed: 33268902
doi: 10.1038/s41422-020-00441-1
Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285
pubmed: 28985560
pmcid: 5685180
doi: 10.1016/j.cell.2017.09.021
Tang D, Kroemer G, Kang R (2023) Ferroptosis in hepatocellular carcinoma: from bench to bedside. Hepatology. Publish Ahead of Print
Chen X, Kang R, Kroemer G et al (2021) Targeting ferroptosis in pancreatic cancer: a double-edged sword. Trends Cancer 7:891–901
pubmed: 34023326
doi: 10.1016/j.trecan.2021.04.005
Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331
pubmed: 24439385
pmcid: 4076414
doi: 10.1016/j.cell.2013.12.010
Jiang L, Kon N, Li T et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62
pubmed: 25799988
pmcid: 4455927
doi: 10.1038/nature14344
Zhang Y, Shi J, Liu X et al (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192
pubmed: 30202049
pmcid: 6170713
doi: 10.1038/s41556-018-0178-0
Song X, Zhu S, Chen P, et al. (2018) AMPK-mediated BECN1 phosphorylation promotes Ferroptosis by directly blocking system X(c)(−) activity. Curr Biol 28: 2388–99 e5, 2388
Doll S, Freitas FP, Shah R et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698
pubmed: 31634899
doi: 10.1038/s41586-019-1707-0
Dai E, Zhang W, Cong D et al (2020) AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun 523:966–971
pubmed: 31964528
doi: 10.1016/j.bbrc.2020.01.066
Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98
pubmed: 27842070
doi: 10.1038/nchembio.2239
Yuan H, Li X, Zhang X et al (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478:1338–1343
pubmed: 27565726
doi: 10.1016/j.bbrc.2016.08.124
Sun X, Ou Z, Chen R et al (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184
pubmed: 26403645
doi: 10.1002/hep.28251
Mao C, Liu X, Zhang Y et al (2021) Author correction: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 596:E13
pubmed: 34341547
doi: 10.1038/s41586-021-03820-9
Chen X, Li J, Kang R et al (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081
pubmed: 32804006
doi: 10.1080/15548627.2020.1810918
Chen F, Cai X, Kang R et al (2023) Autophagy-dependent Ferroptosis in cancer. Antioxid Redox Signal
Li J, Liu J, Xu Y et al (2021) Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy 17:3361–3374
pubmed: 33404288
pmcid: 8632302
doi: 10.1080/15548627.2021.1872241
Liu J, Kuang F, Kroemer G et al (2020) Autophagy-dependent Ferroptosis: machinery and regulation. Cell Chem Biol 27:420–435
pubmed: 32160513
pmcid: 7166192
doi: 10.1016/j.chembiol.2020.02.005
Hou W, Xie Y, Song X et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428
pubmed: 27245739
pmcid: 4968231
doi: 10.1080/15548627.2016.1187366
Bai Y, Meng L, Han L et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508:997–1003
pubmed: 30545638
doi: 10.1016/j.bbrc.2018.12.039
Yang M, Chen P, Liu J et al (2019) Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 5:eaaw2238
pubmed: 31355331
pmcid: 6656546
doi: 10.1126/sciadv.aaw2238
Zhou B, Liu J, Kang R et al (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100
pubmed: 30880243
doi: 10.1016/j.semcancer.2019.03.002
Liu J, Liu Y, Wang Y et al (2023) TMEM164 is a new determinant of autophagy-dependent ferroptosis. Autophagy 19:945–956
pubmed: 35947500
doi: 10.1080/15548627.2022.2111635
Chen X, Song X, Li J et al (2022) Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy:1–21
Kang R, Zhu S, Zeh HJ et al (2018) BECN1 is a new driver of ferroptosis. Autophagy 14:2173–2175
pubmed: 30145930
pmcid: 6984768
doi: 10.1080/15548627.2018.1513758
Chen X, Song X, Li J et al (2023) Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy 19:54–74
pubmed: 35403545
doi: 10.1080/15548627.2022.2059170
Aguilar HN, Zielnik B, Tracey CN et al (2010) Quantification of rapid myosin regulatory light chain phosphorylation using high-throughput in-cell Western assays: comparison to Western immunoblots. PLoS One 5:e9965
pubmed: 20376358
pmcid: 2848601
doi: 10.1371/journal.pone.0009965
Coevoets R, Arican S, Hoogeveen-Westerveld M et al (2009) A reliable cell-based assay for testing unclassified TSC2 gene variants. Eur J Hum Genet EJHG 17:301–310
pubmed: 18854862
doi: 10.1038/ejhg.2008.184
Wan Y, Zhou Z, Yang Y et al (2010) Application of an in-cell Western assay for measurement of influenza a virus replication. J Virol Methods 169:359–364
pubmed: 20709106
doi: 10.1016/j.jviromet.2010.08.005
DuShane JK, Wilczek MP, Crocker MA et al (2019) High-throughput characterization of viral and cellular protein expression patterns during JC polyomavirus infection. Front Microbiol 10:783
pubmed: 31065251
pmcid: 6489551
doi: 10.3389/fmicb.2019.00783
Ma HW, Ye W, Chen HS et al (2017) In-cell Western assays to evaluate Hantaan virus replication as a novel approach to screen antiviral molecules and detect neutralizing antibody titers. Front Cell Infect Microbiol 7:269
pubmed: 28676847
pmcid: 5476785
doi: 10.3389/fcimb.2017.00269
Hoffman GR, Moerke NJ, Hsia M et al (2010) A high-throughput, cell-based screening method for siRNA and small molecule inhibitors of mTORC1 signaling using the in cell Western technique. Assay Drug Dev Technol 8:186–199
pubmed: 20085456
pmcid: 3096554
doi: 10.1089/adt.2009.0213
Schnaiter S, Fürst B, Neu J et al (2014) Screening for MAPK modulators using an in-cell western assay. Methods Mol Biol (Clifton, NJ) 1120:121–129
doi: 10.1007/978-1-62703-791-4_8
Wong SK (2004) A 384-well cell-based phospho-ERK assay for dopamine D2 and D3 receptors. Anal Biochem 333:265–272
pubmed: 15450801
doi: 10.1016/j.ab.2004.05.011
McInerney MP, Pan Y, Short JL et al (2017) Development and validation of an in-cell Western for quantifying P-glycoprotein expression in human brain microvascular endothelial (hCMEC/D3) cells. J Pharm Sci 106:2614–2624
pubmed: 28065764
doi: 10.1016/j.xphs.2016.12.017
Daftarian MP, Vosoughi A, Lemmon V (2014) Gene-based vaccination and screening methods to develop monoclonal antibodies. Methods Mol Biol (Clifton, NJ) 1121:337–346
doi: 10.1007/978-1-4614-9632-8_30
Ruiz-Del-Yerro E, Garcia-Jimenez I, Mamchaoui K et al (2018) Myoblots: dystrophin quantification by in-cell western assay for a streamlined development of Duchenne muscular dystrophy (DMD) treatments. Neuropathol Appl Neurobiol 44:463–473
pubmed: 29086434
doi: 10.1111/nan.12448
Lundholt BK, Scudder KM, Pagliaro L (2003) A simple technique for reducing edge effect in cell-based assays. J Biomol Screen 8:566–570
pubmed: 14567784
doi: 10.1177/1087057103256465