Canonical Inflammasomes.
Canonical activation
Inflammasome
PRRs
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
15
8
2023
pubmed:
14
8
2023
entrez:
14
8
2023
Statut:
ppublish
Résumé
The innate immune response represents the first line of host defense, and it is able to detect pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) through a variety of pattern recognition receptors (PRRs). Among these PRRs, certain cytosolic receptors of the NLRs family (specifically NLRP1, NLRP3, NLRC4, and NAIP) or those containing at least a pyrin domain (PYD) such as pyrin and AIM2, activate the multimeric complex known as inflammasome, and its effector enzyme caspase-1. The caspase-1 induces the proteolytic maturation of the pro-inflammatory cytokines IL-1ß and IL-18, as well as the pore-forming protein gasdermin D (GSDMD). GSDMD is responsible for the release of the two cytokines and the induction of lytic and inflammatory cell death known as pyroptosis. Each inflammasome receptor detects specific stimuli, either directly or indirectly, thereby enhancing the cell's ability to sense infections or homeostatic disturbances. In this chapter, we present the activation mechanism of the so-called "canonical" inflammasomes.
Identifiants
pubmed: 37578712
doi: 10.1007/978-1-0716-3350-2_1
doi:
Substances chimiques
Inflammasomes
0
Carrier Proteins
0
Cytokines
0
Caspases
EC 3.4.22.-
NLR Family, Pyrin Domain-Containing 3 Protein
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-27Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Christgen S, Place DE, Kanneganti T-D (2020) Toward targeting inflammasomes: insights into their regulation and activation. Cell Res 30(4):315–327. https://doi.org/10.1038/s41422-020-0295-8
doi: 10.1038/s41422-020-0295-8
pubmed: 32152420
pmcid: 7118104
Lu A, Magupalli Venkat G, Ruan J, Yin Q, Atianand Maninjay K, Vos MR et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206. https://doi.org/10.1016/j.cell.2014.02.008
doi: 10.1016/j.cell.2014.02.008
pubmed: 24630722
pmcid: 4000066
Stutz A, Horvath GL, Monks BG, Latz E (2013) ASC speck formation as a readout for inflammasome activation. Methods Mol Biol 1040:91 –101. https://doi.org/10.1007/978-1-62703-523-1_8
doi: 10.1007/978-1-62703-523-1_8
pubmed: 23852599
Chan AH, Schroder K (2019) Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med 217(1):e20190314. https://doi.org/10.1084/jem.20190314
doi: 10.1084/jem.20190314
pmcid: 7037238
Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004
doi: 10.1016/j.tibs.2016.10.004
pubmed: 27932073
Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426
doi: 10.1016/S1097-2765(02)00599-3
pubmed: 12191486
Taabazuing CY, Griswold AR, Bachovchin DA (2020) The NLRP1 and CARD8 inflammasomes. Immunol Rev 297(1):13–25. https://doi.org/10.1111/imr.12884
doi: 10.1111/imr.12884
pubmed: 32558991
pmcid: 7483925
Yu CH, Moecking J, Geyer M, Masters SL (2018) Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice. J Mol Biol 430(2):142–152. https://doi.org/10.1016/j.jmb.2017.07.012
doi: 10.1016/j.jmb.2017.07.012
pubmed: 28733143
Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R, Robinson K et al (2016) Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via Inflammasome activation. Cell 167(1):187–202.e17. https://doi.org/10.1016/j.cell.2016.09.001
doi: 10.1016/j.cell.2016.09.001
pubmed: 27662089
Chavarría-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE (2016) Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 Inflammasome activation. PLoS Pathog 12(12):e1006052. https://doi.org/10.1371/journal.ppat.1006052
doi: 10.1371/journal.ppat.1006052
pubmed: 27926929
pmcid: 5142783
Finger JN, Lich JD, Dare LC, Cook MN, Brown KK, Duraiswami C et al (2012) Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem 287(30):25030–25037. https://doi.org/10.1074/jbc.M112.378323
doi: 10.1074/jbc.M112.378323
pubmed: 22665479
pmcid: 3408201
Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE (2019) Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science (New York, NY) 364(6435). https://doi.org/10.1126/science.aau1330
Lopes Fischer N, Naseer N, Shin S, Brodsky IE (2020) Effector-triggered immunity and pathogen sensing in metazoans. Nat Microbiol 5(1):14–26. https://doi.org/10.1038/s41564-019-0623-2
doi: 10.1038/s41564-019-0623-2
pubmed: 31857733
Robinson KS, Teo DET, Tan KS, Toh GA, Ong HH, Lim CK et al (2020) Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science (New York, NY) 370(6521). https://doi.org/10.1126/science.aay2002
Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD (2021) Diverse viral proteases activate the NLRP1 inflammasome. elife:10. https://doi.org/10.7554/eLife.60609
Bauernfried S, Scherr MJ, Pichlmair A, Duderstadt KE, Hornung V (2021) Human NLRP1 is a sensor for double-stranded RNA. Science (New York, NY) 371(6528). https://doi.org/10.1126/science.abd0811
Zhong FL, Robinson K, Teo DET, Tan KY, Lim C, Harapas CR et al (2018) Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. 293(49):18864–18878. https://doi.org/10.1074/jbc.RA118.004350
Griswold AR, Ball DP, Bhattacharjee A, Chui AJ, Rao SD, Taabazuing CY et al (2019) DPP9’s enzymatic activity and not its binding to CARD8 inhibits Inflammasome activation. ACS Chem Biol 14(11):2424–2429. https://doi.org/10.1021/acschembio.9b00462
doi: 10.1021/acschembio.9b00462
pubmed: 31525884
pmcid: 6862324
Gai K, Okondo MC, Rao SD, Chui AJ, Ball DP, Johnson DC et al (2019) DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death Dis 10(8):587. https://doi.org/10.1038/s41419-019-1817-5
doi: 10.1038/s41419-019-1817-5
pubmed: 31383852
pmcid: 6683174
Costa FRC, Leite JA, Rassi DM, da Silva JF, Elias-Oliveira J, Guimarães JB et al (2021) NLRP1 acts as a negative regulator of Th17 cell programming in mice and humans with autoimmune diabetes. Cell Rep 35(8). https://doi.org/10.1016/j.celrep.2021.109176
Ting JP, Duncan JA, Lei Y (2010) How the noninflammasome NLRs function in the innate immune system. Science (New York, NY) 327(5963):286–290. https://doi.org/10.1126/science.1184004
doi: 10.1126/science.1184004
Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F et al (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55(5):443–452. https://doi.org/10.1369/jhc.6A7101.2006
doi: 10.1369/jhc.6A7101.2006
pubmed: 17164409
Okondo MC, Rao SD, Taabazuing CY, Chui AJ, Poplawski SE, Johnson DC et al (2018) Inhibition of Dpp8/9 activates the Nlrp1b Inflammasome. Cell Chem Biol 25(3):262–7.e5. https://doi.org/10.1016/j.chembiol.2017.12.013
doi: 10.1016/j.chembiol.2017.12.013
pubmed: 29396289
pmcid: 5856610
Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD (2007) The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 17(13):1140–1145. https://doi.org/10.1016/j.cub.2007.05.074
doi: 10.1016/j.cub.2007.05.074
pubmed: 17600714
Yap JKY, Pickard BS, Chan EWL, Gan SY (2019) The role of neuronal NLRP1 Inflammasome in Alzheimer’s disease: bringing neurons into the Neuroinflammation game. Mol Neurobiol 56(11):7741–7753. https://doi.org/10.1007/s12035-019-1638-7
doi: 10.1007/s12035-019-1638-7
pubmed: 31111399
Sand J, Haertel E, Biedermann T, Contassot E, Reichmann E, French LE et al (2018) Expression of inflammasome proteins and inflammasome activation occurs in human, but not in murine keratinocytes. Cell Death Dis 9(2):24. https://doi.org/10.1038/s41419-017-0009-4
doi: 10.1038/s41419-017-0009-4
pubmed: 29348630
pmcid: 5833864
Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 Inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):3328. https://doi.org/10.3390/ijms20133328
doi: 10.3390/ijms20133328
pubmed: 31284572
pmcid: 6651423
Hayward JA, Mathur A, Ngo C, Man SM (2018) Cytosolic recognition of microbes and pathogens: Inflammasomes in action. Microbiol Mol Biol Rev 82(4). https://doi.org/10.1128/mmbr.00015-18
Sharma M, de Alba E (2021) Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020872
Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q et al (2019) Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570(7761):338–343. https://doi.org/10.1038/s41586-019-1295-z
doi: 10.1038/s41586-019-1295-z
pubmed: 31189953
pmcid: 6774351
Aksentijevich I, Putnam CD, Remmers EF, Mueller JL, Le J, Kolodner RD et al (2007) The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in north American patients and a new cryopyrin model. Arthritis Rheum 56(4):1273–1285. https://doi.org/10.1002/art.22491
doi: 10.1002/art.22491
pubmed: 17393462
pmcid: 4321998
Hafner-Bratkovič I, Sušjan P, Lainšček D, Tapia-Abellán A, Cerović K, Kadunc L et al (2018) NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat Commun 9(1):5182. https://doi.org/10.1038/s41467-018-07573-4
doi: 10.1038/s41467-018-07573-4
pubmed: 30518920
pmcid: 6281599
Mayor A, Martinon F, De Smedt T, Pétrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 8(5):497–503. https://doi.org/10.1038/ni1459
doi: 10.1038/ni1459
pubmed: 17435760
Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P, Alice in caspase land. (2002) A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9(4):358–361. https://doi.org/10.1038/sj.cdd.4400989
doi: 10.1038/sj.cdd.4400989
pubmed: 11965488
Lopez-Castejon G (2020) Control of the inflammasome by the ubiquitin system. FEBS J 287(1):11–26. https://doi.org/10.1111/febs.15118
doi: 10.1111/febs.15118
pubmed: 31679183
He Y, Zeng MY, Yang D, Motro B, Núñez G (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530(7590):354–357. https://doi.org/10.1038/nature16959
doi: 10.1038/nature16959
pubmed: 26814970
pmcid: 4810788
Niu T, De Rosny C, Chautard S, Rey A, Patoli D, Groslambert M et al (2021) NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat Commun 12(1):5862. https://doi.org/10.1038/s41467-021-26142-w
doi: 10.1038/s41467-021-26142-w
pubmed: 34615873
pmcid: 8494922
Weber ANR, Bittner ZA, Shankar S, Liu X, Chang TH, Jin T et al (2020) Recent insights into the regulatory networks of NLRP3 inflammasome activation. J Cell Sci 133(23). https://doi.org/10.1242/jcs.248344
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47(1):15–31. https://doi.org/10.1016/j.immuni.2017.06.020
doi: 10.1016/j.immuni.2017.06.020
pubmed: 28723547
Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M et al (2018) The TWIK2 potassium Efflux Channel in macrophages mediates NLRP3 Inflammasome-induced inflammation. Immunity 49(1):56–65.e4. https://doi.org/10.1016/j.immuni.2018.04.032
doi: 10.1016/j.immuni.2018.04.032
pubmed: 29958799
pmcid: 6051907
Mayes-Hopfinger L, Enache A, Xie J, Huang C-L, Köchl R, Tybulewicz VLJ et al (2021) Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis. Nat Commun 12(1):4546. https://doi.org/10.1038/s41467-021-24784-4
doi: 10.1038/s41467-021-24784-4
pubmed: 34315884
pmcid: 8316491
Wang L, Negro R, Wu H (2020) TRPM2, linking oxidative stress and ca(2+) permeation to NLRP3 inflammasome activation. Curr Opin Immunol 62:131 –135. https://doi.org/10.1016/j.coi.2020.01.005
doi: 10.1016/j.coi.2020.01.005
pubmed: 32058297
pmcid: 7533107
Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S et al (2020) Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol 21(1):30–41. https://doi.org/10.1038/s41590-019-0548-1
doi: 10.1038/s41590-019-0548-1
pubmed: 31819254
Green JP, Yu S, Martín-Sánchez F, Pelegrin P, Lopez-Castejon G, Lawrence CB et al (2018) Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc Natl Acad Sci U S A 115(40):E9371–E9e80. https://doi.org/10.1073/pnas.1812744115
doi: 10.1073/pnas.1812744115
pubmed: 30232264
pmcid: 6176575
Mohanty A, Tiwari-Pandey R, Pandey NR (2019) Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal 13(3):303–318. https://doi.org/10.1007/s12079-019-00507-9
doi: 10.1007/s12079-019-00507-9
pubmed: 30719617
pmcid: 6732146
Meyers AK, Zhu X (2020) The NLRP3 Inflammasome: metabolic regulation and contribution to Inflammaging. Cell 9(8):1808. https://doi.org/10.3390/cells9081808
doi: 10.3390/cells9081808
Hughes MM, O’Neill LAJ (2018) Metabolic regulation of NLRP3. Immunol Rev 281(1):88–98. https://doi.org/10.1111/imr.12608
doi: 10.1111/imr.12608
pubmed: 29247992
Chevriaux A, Pilot T, Derangère V, Simonin H, Martine P, Chalmin F et al (2020) Cathepsin B is required for NLRP3 Inflammasome activation in macrophages, through NLRP3. Interaction:8. https://doi.org/10.3389/fcell.2020.00167
Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459(7245):433–436. https://doi.org/10.1038/nature07965
doi: 10.1038/nature07965
pubmed: 19339971
Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121. https://doi.org/10.1038/nature10558
doi: 10.1038/nature10558
pubmed: 22002608
Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A (2015) Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 6(1):8761. https://doi.org/10.1038/ncomms9761
doi: 10.1038/ncomms9761
pubmed: 26508369
Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F et al (2016) Human monocytes engage an alternative Inflammasome pathway. Immunity 44(4):833–846. https://doi.org/10.1016/j.immuni.2016.01.012
doi: 10.1016/j.immuni.2016.01.012
pubmed: 27037191
Tyrkalska SD, Candel S, Mulero V (2021) The neutrophil inflammasome. Dev Comp Immunol 115:103874 . https://doi.org/10.1016/j.dci.2020.103874
doi: 10.1016/j.dci.2020.103874
pubmed: 32987011
Nakamura Y, Kambe N, Saito M, Nishikomori R, Kim Y-G, Murakami M et al (2009) Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J Exp Med 206(5):1037–1046. https://doi.org/10.1084/jem.20082179
doi: 10.1084/jem.20082179
pubmed: 19364881
pmcid: 2715029
Bonnekoh H, Scheffel J, Kambe N, Krause K (2018) The role of mast cells in autoinflammation. Immunol Rev 282(1):265–275. https://doi.org/10.1111/imr.12633
doi: 10.1111/imr.12633
pubmed: 29431217
Kumar H, Kumagai Y, Tsuchida T, Koenig PA, Satoh T, Guo Z et al (2009) Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J Immunol (Baltimore, Md: 1950) 183(12):8061–8067. https://doi.org/10.4049/jimmunol.0902477
doi: 10.4049/jimmunol.0902477
Ali MF, Dasari H, Van Keulen VP, Carmona EM (2017) Canonical stimulation of the NLRP3 Inflammasome by fungal antigens links innate and adaptive B-lymphocyte responses by modulating IL-1β and IgM production. Front Immunol 8:1504 . https://doi.org/10.3389/fimmu.2017.01504
doi: 10.3389/fimmu.2017.01504
pubmed: 29170665
pmcid: 5684107
Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C et al (2016) T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science (New York, NY) 352(6292):aad1210. https://doi.org/10.1126/science.aad1210
doi: 10.1126/science.aad1210
Arbore G, West EE, Rahman J, Le Friec G, Niyonzima N, Pirooznia M (2018) Complement receptor CD46 co-stimulates optimal human CD8(+) T cell effector function via fatty acid metabolism. 9(1):4186. https://doi.org/10.1038/s41467-018-06706-z
Fong JJ, Tsai CM, Saha S, Nizet V, Varki A, Bui JD (2018) Siglec-7 engagement by GBS β-protein suppresses pyroptotic cell death of natural killer cells. Proc Natl Acad Sci U S A 115(41):10410–10415. https://doi.org/10.1073/pnas.1804108115
doi: 10.1073/pnas.1804108115
pubmed: 30254166
pmcid: 6187154
Hottz ED, Monteiro APT, Bozza FA, Bozza PT (2015) Inflammasome in platelets: allying coagulation and inflammation in infectious and sterile diseases? Mediat Inflamm 2015:435783 . https://doi.org/10.1155/2015/435783
doi: 10.1155/2015/435783
He Y, Franchi L, Núñez G (2013) TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol. (Baltimore, Md: 1950) 190(1):334–339. https://doi.org/10.4049/jimmunol.1202737
doi: 10.4049/jimmunol.1202737
pubmed: 23225887
Tourneur L, Witko-Sarsat V (2019) Inflammasome activation: neutrophils go their own way. 105(3):433–436. https://doi.org/10.1002/JLB.3CE1118-433R
Bruchard M, Rebe C, Derangere V, Togbe D, Ryffel B, Boidot R et al (2015) The receptor NLRP3 is a transcriptional regulator of TH2 differentiation 16(8):859–870. https://doi.org/10.1038/ni.3202
doi: 10.1038/ni.3202
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E et al (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 20(6):375–388. https://doi.org/10.1038/s41577-020-0285-6
doi: 10.1038/s41577-020-0285-6
pubmed: 32132681
pmcid: 7186935
Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P et al (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512(7512):69–73. https://doi.org/10.1038/nature13322
doi: 10.1038/nature13322
pubmed: 25043000
Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V (2012) NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. (Baltimore, Md: 1950) 189(8):4175–4181. https://doi.org/10.4049/jimmunol.1201516
doi: 10.4049/jimmunol.1201516
pubmed: 22984082
Stehlik C, Krajewska M, Welsh K, Krajewski S, Godzik A, Reed JC (2003) The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem J 373(Pt 1):101–113. https://doi.org/10.1042/bj20030304
doi: 10.1042/bj20030304
pubmed: 12656673
pmcid: 1223462
Dorfleutner A, Bryan NB, Talbott SJ, Funya KN, Rellick SL, Reed JC et al (2007) Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect Immun 75(3):1484–1492. https://doi.org/10.1128/iai.01315-06
doi: 10.1128/iai.01315-06
pubmed: 17178784
Eren E, Berber M, Özören N (2017) NLRC3 protein inhibits inflammation by disrupting NALP3 inflammasome assembly via competition with the adaptor protein ASC for pro-caspase-1 binding. J Biol Chem 292(30):12691–12701. https://doi.org/10.1074/jbc.M116.769695
doi: 10.1074/jbc.M116.769695
pubmed: 28584053
pmcid: 5535042
Seok JK, Kang HC, Cho Y-Y, Lee HS, Lee JY (2021) Regulation of the NLRP3 Inflammasome by post-translational modifications and. Small Molecules 11. https://doi.org/10.3389/fimmu.2020.618231
Jackson JT, Mulazzani E, Nutt SL, Masters SL (2021) The role of PLCγ2 in immunological disorders, cancer, and neurodegeneration. J Biol Chem 297(2). https://doi.org/10.1016/j.jbc.2021.100905
Tang J, Tu S, Lin G, Guo H, Yan C, Liu Q et al (2020) Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med 217(4). https://doi.org/10.1084/jem.20182091
Wan P, Zhang Q, Liu W, Jia Y, Ai S, Wang T et al (2019) Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation. FASEB J 33(4):5793–5807. https://doi.org/10.1096/fj.201801681R
doi: 10.1096/fj.201801681R
pubmed: 30653357
Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z et al (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 Inflammasome. Cell 160(1):62–73. https://doi.org/10.1016/j.cell.2014.11.047
doi: 10.1016/j.cell.2014.11.047
pubmed: 25594175
Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA et al (2013) Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat Immunol 14(1):52–60. https://doi.org/10.1038/ni.2474
doi: 10.1038/ni.2474
pubmed: 23160153
Sokolowska M, Chen LY, Liu Y, Martinez-Anton A, Qi HY, Logun C et al (2015) Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J Immunol (Baltimore, Md: 1950) 194(11):5472–5487. https://doi.org/10.4049/jimmunol.1401343
doi: 10.4049/jimmunol.1401343
Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R (2017) Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science (New York, NY) 356(6337):513–519. https://doi.org/10.1126/science.aal3535
doi: 10.1126/science.aal3535
Salina A, Brandt S, Medeiros AI, Serezani H (2019) Leukotriene B4 is required for inflammasome activation. J Immunol, Suppl 1 202:183 .17
Segovia M, Russo S, Jeldres M, Mahmoud YD, Perez V, Duhalde M et al (2019) Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing Inflammasome activation. Cancer Cell 35(5):767–81.e6. https://doi.org/10.1016/j.ccell.2019.04.003
doi: 10.1016/j.ccell.2019.04.003
pubmed: 31085177
pmcid: 6521897
Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozören N, Jagirdar R et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6):576–582. https://doi.org/10.1038/ni1346
doi: 10.1038/ni1346
pubmed: 16648852
Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. https://doi.org/10.1038/nature02664
doi: 10.1038/nature02664
pubmed: 15190255
Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7(6):569–575. https://doi.org/10.1038/ni1344
doi: 10.1038/ni1344
pubmed: 16648853
Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595. https://doi.org/10.1038/nature10394
doi: 10.1038/nature10394
pubmed: 21874021
pmcid: 3184209
Lightfield KL, Persson J, Trinidad NJ, Brubaker SW, Kofoed EM, Sauer JD et al (2011) Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect Immun 79(4):1606–1614. https://doi.org/10.1128/iai.01187-10
doi: 10.1128/iai.01187-10
pubmed: 21282416
pmcid: 3067536
Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. https://doi.org/10.1038/nature10510
doi: 10.1038/nature10510
pubmed: 21918512
Diebolder CA, Halff EF, Koster AJ, Huizinga EG, Koning RI (2015) Cryoelectron tomography of the NAIP5/NLRC4 Inflammasome: implications for NLR activation. Structure (London, England: 1993) 23(12):2349–2357. https://doi.org/10.1016/j.str.2015.10.001
doi: 10.1016/j.str.2015.10.001
pubmed: 26585513
Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y et al (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science (New York, NY) 350(6259):399–404. https://doi.org/10.1126/science.aac5489
doi: 10.1126/science.aac5489
Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q et al (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science (New York, NY) 350(6259):404–409. https://doi.org/10.1126/science.aac5789
doi: 10.1126/science.aac5789
Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci 110(35):14408. https://doi.org/10.1073/pnas.1306376110
doi: 10.1073/pnas.1306376110
pubmed: 23940371
pmcid: 3761597
Kortmann J, Brubaker SW, Monack DM (2015) Cutting edge: Inflammasome activation in primary human macrophages is dependent on Flagellin. J Immunol:1403100. https://doi.org/10.4049/jimmunol.1403100
Wang SB, Narendran S, Hirahara S, Varshney A, Pereira F, Apicella I et al (2021) DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retrotransposon RNAs. Science Immunol 6(66):eabi4493. https://doi.org/10.1126/sciimmunol.abi4493
doi: 10.1126/sciimmunol.abi4493
Man SM, Hopkins LJ, Nugent E, Cox S, Glück IM, Tourlomousis P et al (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci 111(20):7403. https://doi.org/10.1073/pnas.1402911111
doi: 10.1073/pnas.1402911111
pubmed: 24803432
pmcid: 4034195
Haloupek N, Grob P, Tenthorey J, Vance RE, Nogales E (2019) Cryo-EM studies of NAIP-NLRC4 inflammasomes. Methods Enzymol 625:177 –204. https://doi.org/10.1016/bs.mie.2019.04.030
doi: 10.1016/bs.mie.2019.04.030
pubmed: 31455527
pmcid: 7025759
Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, Gilmour LL, Lamkanfi M et al (2012) Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490(7421):539–542. https://doi.org/10.1038/nature11429
doi: 10.1038/nature11429
pubmed: 22885697
Liu W, Liu X, Li Y, Zhao J, Liu Z, Hu Z et al (2017) LRRK2 promotes the activation of NLRC4 inflammasome during salmonella Typhimurium infection. J Exp Med 214(10):3051–3066. https://doi.org/10.1084/jem.20170014
doi: 10.1084/jem.20170014
pubmed: 28821568
pmcid: 5626397
Li Y, Fu T-M, Lu A, Witt K, Ruan J, Shen C et al (2018) Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc Natl Acad Sci 115(43):10845. https://doi.org/10.1073/pnas.1810524115
doi: 10.1073/pnas.1810524115
pubmed: 30279182
pmcid: 6205419
Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG et al (2011) Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 13(5):540–549. https://doi.org/10.1016/j.cmet.2011.04.001
doi: 10.1016/j.cmet.2011.04.001
pubmed: 21531336
pmcid: 3090630
von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N et al (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490(7418):107–111. https://doi.org/10.1038/nature11351
doi: 10.1038/nature11351
Man SM, Tourlomousis P, Hopkins L, Monie TP, Fitzgerald KA, Bryant CE (2013) Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1β production. J Immunol. (Baltimore, Md: 1950) 191(10):5239–5246. https://doi.org/10.4049/jimmunol.1301581
doi: 10.4049/jimmunol.1301581
pubmed: 24123685
Mascarenhas DPA, Cerqueira DM, Pereira MSF, Castanheira FVS, Fernandes TD, Manin GZ et al (2017) Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. PLoS Pathog 13(8):e1006502. https://doi.org/10.1371/journal.ppat.1006502
doi: 10.1371/journal.ppat.1006502
pubmed: 28771586
pmcid: 5542441
Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY et al (2017) NAIP-NLRC4 Inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of Caspase-1 and -8. Immunity 46(4):649–659. https://doi.org/10.1016/j.immuni.2017.03.016
doi: 10.1016/j.immuni.2017.03.016
pubmed: 28410991
pmcid: 5476318
Semper RP, Vieth M, Gerhard M, Mejías-Luque R (2019) Helicobacter pylori exploits the NLRC4 inflammasome to dampen host defenses. J Immunol 203(8):2183. https://doi.org/10.4049/jimmunol.1900351
doi: 10.4049/jimmunol.1900351
pubmed: 31511355
Thomas CJ, Schroder K (2013) Pattern recognition receptor function in neutrophils. Trends Immunol 34(7):317–328. https://doi.org/10.1016/j.it.2013.02.008
doi: 10.1016/j.it.2013.02.008
pubmed: 23540649
Akkaya I, Oylumlu E, Ozel I, Uzel G, Durmus L, Ciraci C (2021) NLRC4 Inflammasome-mediated regulation of eosinophilic functions. Immune Netw 21(6):e42-e. https://doi.org/10.4110/in.2021.21.e42
doi: 10.4110/in.2021.21.e42
Gutierrez O, Pipaon C, Fernandez-Luna JL (2004) Ipaf is upregulated by tumor necrosis factor-alpha in human leukemia cells. FEBS Lett 568(1–3):79–82. https://doi.org/10.1016/j.febslet.2004.04.095
doi: 10.1016/j.febslet.2004.04.095
pubmed: 15196924
Sadasivam S, Gupta S, Radha V, Batta K, Kundu TK, Swarup G (2005) Caspase-1 activator Ipaf is a p53-inducible gene involved in apoptosis. Oncogene 24(4):627–636. https://doi.org/10.1038/sj.onc.1208201
doi: 10.1038/sj.onc.1208201
pubmed: 15580302
Nordlander S, Pott J, Maloy KJ (2014) NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol 7(4):775–785. https://doi.org/10.1038/mi.2013.95
doi: 10.1038/mi.2013.95
pubmed: 24280936
Hausmann A, Böck D, Geiser P, Berthold DL, Fattinger SA, Furter M et al (2020) Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen salmonella Typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunol 13(3):530–544. https://doi.org/10.1038/s41385-019-0247-0
doi: 10.1038/s41385-019-0247-0
pubmed: 31953493
pmcid: 7181392
Janowski AM, Colegio OR, Hornick EE, McNiff JM, Martin MD, Badovinac VP et al (2016) NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest 126(10):3917–3928. https://doi.org/10.1172/JCI86953
doi: 10.1172/JCI86953
pubmed: 27617861
pmcid: 5096827
DeYoung KL, Ray ME, Su YA, Anzick SL, Johnstone RW, Trapani JA et al (1997) Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 15(4):453–457. https://doi.org/10.1038/sj.onc.1201206
doi: 10.1038/sj.onc.1201206
pubmed: 9242382
Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518. https://doi.org/10.1038/nature07725
doi: 10.1038/nature07725
pubmed: 19158675
pmcid: 2726264
Fernandes-Alnemri T, Yu J-W, Juliana C, Solorzano L, Kang S, Wu J et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393. https://doi.org/10.1038/ni.1859
doi: 10.1038/ni.1859
pubmed: 20351693
pmcid: 3111085
Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10(3):266–272. https://doi.org/10.1038/ni.1702
doi: 10.1038/ni.1702
pubmed: 19158679
Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S et al (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science (New York, NY) 323(5917):1057–1060. https://doi.org/10.1126/science.1169841
doi: 10.1126/science.1169841
Lugrin J, Martinon F (2018) The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. 281(1):99–114. https://doi.org/10.1111/imr.12618
Sharma BR, Karki R, Kanneganti T-D (2019) Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol 49(11):1998–2011. https://doi.org/10.1002/eji.201848070
doi: 10.1002/eji.201848070
pubmed: 31372985
pmcid: 7015662
Kumari P, Russo AJ, Shivcharan S, Rathinam VA (2020) AIM2 in health and disease: Inflammasome and beyond. Immunol Rev 297(1):83–95. https://doi.org/10.1111/imr.12903
doi: 10.1111/imr.12903
pubmed: 32713036
pmcid: 7668394
Rathinam VAK, Chan FK (2018) Inflammasome, inflammation, and tissue homeostasis. Trends Mol Med 24(3):304–318. https://doi.org/10.1016/j.molmed.2018.01.004
doi: 10.1016/j.molmed.2018.01.004
pubmed: 29433944
pmcid: 6456255
Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M et al (2012) Critical role of AIM2 in mycobacterium tuberculosis infection. Int Immunol 24(10):637–644. https://doi.org/10.1093/intimm/dxs062
doi: 10.1093/intimm/dxs062
pubmed: 22695634
Hanamsagar R, Aldrich A, Kielian T (2014) Critical role for the AIM2 inflammasome during acute CNS bacterial infection. 129(4):704–711. https://doi.org/10.1111/jnc.12669
Fang R, Tsuchiya K, Kawamura I, Shen Y, Hara H, Sakai S et al (2011) Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol 187(9):4890. https://doi.org/10.4049/jimmunol.1100381
doi: 10.4049/jimmunol.1100381
pubmed: 21957143
Kalantari P, DeOliveira RB, Chan J, Corbett Y, Rathinam V, Stutz A et al (2014) Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria. Cell Rep 6(1):196–210. https://doi.org/10.1016/j.celrep.2013.12.014
doi: 10.1016/j.celrep.2013.12.014
pubmed: 24388751
pmcid: 4105362
Fisch D, Bando H, Clough B, Hornung V, Yamamoto M, Shenoy AR et al (2019) Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J 38(13):e100926. https://doi.org/10.15252/embj.2018100926
doi: 10.15252/embj.2018100926
pubmed: 31268602
pmcid: 6600649
Reinholz M, Kawakami Y, Salzer S, Kreuter A, Dombrowski Y, Koglin S et al (2013) HPV16 activates the AIM2 inflammasome in keratinocytes. Arch Dermatol Res 305(8):723–732. https://doi.org/10.1007/s00403-013-1375-0
doi: 10.1007/s00403-013-1375-0
pubmed: 23764897
Yogarajah T, Ong KC, Perera D, Wong KT (2017) AIM2 Inflammasome-mediated Pyroptosis in enterovirus A71-infected neuronal cells restricts viral replication. Sci Rep 7(1):5845. https://doi.org/10.1038/s41598-017-05589-2
doi: 10.1038/s41598-017-05589-2
pubmed: 28724943
pmcid: 5517550
Ekchariyawat P, Hamel R, Bernard E, Wichit S, Surasombatpattana P, Talignani L et al (2015) Inflammasome signaling pathways exert antiviral effect against chikungunya virus in human dermal fibroblasts. Infect Genet Evol 32:401 –408. https://doi.org/10.1016/j.meegid.2015.03.025
doi: 10.1016/j.meegid.2015.03.025
pubmed: 25847693
Man SM, Karki R, Kanneganti TD (2016) AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 46(2):269–280. https://doi.org/10.1002/eji.201545839
doi: 10.1002/eji.201545839
pubmed: 26626159
Wang B, Tian Y, Yin Q (2019) AIM2 Inflammasome assembly and Signaling. Adv Exp Med Biol 1172:143 –155. https://doi.org/10.1007/978-981-13-9367-9_7
doi: 10.1007/978-981-13-9367-9_7
pubmed: 31628655
Wang B, Yin Q (2017) AIM2 inflammasome activation and regulation: a structural perspective. J Struct Biol 200(3):279–282. https://doi.org/10.1016/j.jsb.2017.08.001
doi: 10.1016/j.jsb.2017.08.001
pubmed: 28813641
pmcid: 5733693
Pierini R, Juruj C, Perret M, Jones CL, Mangeot P, Weiss DS et al (2012) AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 19(10):1709–1721. https://doi.org/10.1038/cdd.2012.51
doi: 10.1038/cdd.2012.51
pubmed: 22555457
pmcid: 3438500
El-Zaatari M, Bishu S, Zhang M, Grasberger H, Hou G, Haley H et al (2020) Aim2-mediated/IFN-β-independent regulation of gastric metaplastic lesions via CD8+ T cells. JCI Insight 5(5). https://doi.org/10.1172/jci.insight.94035
Svensson A, Patzi Churqui M, Schlüter K, Lind L, Eriksson K (2017) Maturation-dependent expression of AIM2 in human B-cells. PLoS One 12(8):e0183268-e. https://doi.org/10.1371/journal.pone.0183268
doi: 10.1371/journal.pone.0183268
Harris J, Lang T, Thomas JPW, Sukkar MB, Nabar NR, Kehrl JH (2017) Autophagy and inflammasomes. Mol Immunol 86:10 –15. https://doi.org/10.1016/j.molimm.2017.02.013
doi: 10.1016/j.molimm.2017.02.013
pubmed: 28249679
Liu T, Tang Q, Liu K, Xie W, Liu X, Wang H et al (2016) TRIM11 suppresses AIM2 Inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep 16(7):1988–2002. https://doi.org/10.1016/j.celrep.2016.07.019
doi: 10.1016/j.celrep.2016.07.019
pubmed: 27498865
Rodrigue-Gervais IG, Doiron K, Champagne C, Mayes L, Leiva-Torres GA, Vanié P et al (2018) The mitochondrial protease HtrA2 restricts the NLRP3 and AIM2 inflammasomes. Sci Rep 8(1):8446. https://doi.org/10.1038/s41598-018-26603-1
doi: 10.1038/s41598-018-26603-1
pubmed: 29855523
pmcid: 5981608
Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I (2019) The pyrin Inflammasome in health and disease. Front Immunol 10:1745 . https://doi.org/10.3389/fimmu.2019.01745
doi: 10.3389/fimmu.2019.01745
pubmed: 31456795
pmcid: 6698799
Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ et al (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. J Proc Natl Acad Sci 103(26):9982–9987. https://doi.org/10.1073/pnas.0602081103
Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD et al (2007) The SPRY domain of pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14(8):1457–1466. https://doi.org/10.1038/sj.cdd.4402142
doi: 10.1038/sj.cdd.4402142
pubmed: 17431422
Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP et al (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11(3):591–604. https://doi.org/10.1016/s1097-2765(03)00056-x
doi: 10.1016/s1097-2765(03)00056-x
pubmed: 12667444
Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S et al (2006) Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ 13(2):236–249. https://doi.org/10.1038/sj.cdd.4401734
doi: 10.1038/sj.cdd.4401734
pubmed: 16037825
Xu H, Yang J, Gao W, Li L, Li P, Zhang L et al (2014) Innate immune sensing of bacterial modifications of rho GTPases by the pyrin inflammasome. Nature 513(7517):237–241. https://doi.org/10.1038/nature13449
doi: 10.1038/nature13449
pubmed: 24919149
Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17(8):914–921. https://doi.org/10.1038/ni.3457
doi: 10.1038/ni.3457
pubmed: 27270401
pmcid: 4955684
Yu J-W, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L et al (2007) Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell 28(2):214–227. https://doi.org/10.1016/j.molcel.2007.08.029
doi: 10.1016/j.molcel.2007.08.029
pubmed: 17964261
pmcid: 2719761
Starnes TW, Bennin DA, Bing X, Eickhoff JC, Grahf DC, Bellak JM et al (2014) The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 123(17):2703–2714. https://doi.org/10.1182/blood-2013-07-516948
doi: 10.1182/blood-2013-07-516948
pubmed: 24421327
pmcid: 3999755