Estrogen-Related Receptor Alpha (ERRα) Promotes Cancer Stem Cell-Like Characteristics in Breast Cancer.

Breast cancer Breast cancer stem cells Cell cycle Estrogen related receptor α Mammosphere XCT-790

Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
Nov 2023
Historique:
accepted: 04 08 2023
medline: 27 11 2023
pubmed: 16 8 2023
entrez: 16 8 2023
Statut: ppublish

Résumé

Cancer stem cells drive tumor initiation, invasion, metastasis and recurrence. In the present study, we have evaluated the role of ERRα in the maintenance of breast cancer stem cells (BCSCs) using breast cancer cell lines. The inhibition of ERRα with the inverse agonist, XCT-790, or the knockdown of ERRα in breast cancer cells significantly reduced the mammosphere formation efficiency and mammosphere size along with a significant reduction in the CD44

Identifiants

pubmed: 37584854
doi: 10.1007/s12015-023-10605-2
pii: 10.1007/s12015-023-10605-2
doi:

Substances chimiques

XCT790 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2807-2819

Subventions

Organisme : Science and Engineering Research Board (SERB), DST
ID : EMR/2016/006964
Organisme : Indian Council of Medical Research
ID : 45/30/2020-BIO/BMS
Organisme : Indian Council of Medical Research
ID : Indian Council of Medical Research
Organisme : Department of Biotechnology, Ministry of Science and Technology, India
ID : BT/INF/22/SP42155/2021
Organisme : university grants commission, Government of India
ID : university grants commission, Government of India
Organisme : Council of Scientific and Industrial Research, Government of India
ID : Council of Scientific and Industrial Research, Government of India

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. C Ca: A Cancer Journal For Clinicians, 71, 209–249. https://doi.org/10.3322/caac.21660
doi: 10.3322/caac.21660
Hart, C. D., Migliaccio, I., Malorni, L., Guarducci, C., Biganzoli, L., & Di Leo, A. (2015). Challenges in the management of advanced, ER-positive, HER2-negative breast cancer. Nature Reviews Clinical Oncology, 12, 541–552. https://doi.org/10.1038/nrclinonc.2015.99
doi: 10.1038/nrclinonc.2015.99 pubmed: 26011489
Misawa, A., & Inoue, S. (2015). Estrogen-related receptors in breast cancer and prostate cancer. Frontiers In Endocrinology, 6,. https://doi.org/10.3389/fendo.2015.00083
doi: 10.3389/fendo.2015.00083 pubmed: 26074877 pmcid: 4443769
Liu, Y., Ma, H., & Yao, J. (2020). ERα, a key target for cancer therapy: A review. Oncotargets and Therapy, 13, 2183–2191. https://doi.org/10.2147/OTT.S236532
doi: 10.2147/OTT.S236532 pubmed: 32210584 pmcid: 7073439
Deblois, G., & Giguère, V. (2013). Oestrogen-related receptors in breast cancer: Control of cellular metabolism and beyond. Nature Reviews Cancer, 13, 27–36. https://doi.org/10.1038/nrc3396
doi: 10.1038/nrc3396 pubmed: 23192231
Huss, J. M., Torra, I. P., Staels, B., Giguère, V., & Kelly, D. P. (2004). Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Molecular and Cellular Biology, 24, 9079–9091. https://doi.org/10.1128/MCB.24.20.9079-9091.2004
doi: 10.1128/MCB.24.20.9079-9091.2004 pubmed: 15456881 pmcid: 517878
Stein, R. A., Chang, C. Y., Kazmin, D. A., Way, J., Schroeder, T., Wergin, M., Dewhirst, M. W., & McDonnell, D. P. (2008). Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer. Cancer Research, 68, 8805–8812. https://doi.org/10.1158/0008-5472.CAN-08-1594
doi: 10.1158/0008-5472.CAN-08-1594 pubmed: 18974123 pmcid: 2633645
Suzuki, T., Miki, Y., Moriya, T., Shimada, N., Ishida, T., Hirakawa, H., Ohuchi, N., & Sasano, H. (2004). Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. Cancer Research, 64, 4670–4676. https://doi.org/10.1158/0008-5472.CAN-04-0250
doi: 10.1158/0008-5472.CAN-04-0250 pubmed: 15231680
Manna, S., Bostner, J., Sun, Y., Miller, L. D., Alayev, A., Schwartz, N. S., Lager, E., Fornander, T., Nordenskjöld, B., Yu, J. J., Stål, O., & Holz, M. K. (2016). ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer. Clinical Cancer Research, 22, 1421–1431. https://doi.org/10.1158/1078-0432.CCR-15-0857
doi: 10.1158/1078-0432.CCR-15-0857 pubmed: 26542058
Bianco, S., Lanvin, O., Tribollet, V., Macari, C., North, S., & Vanacker, J. M. (2009). Modulating estrogen receptor-related receptor-alpha activity inhibits cell proliferation. Journal of Biological Chemistry, 284, 23286–23292. https://doi.org/10.1074/jbc.M109.028191
doi: 10.1074/jbc.M109.028191 pubmed: 19546226 pmcid: 2749102
Berman, A. Y., Manna, S., Schwartz, N. S., Katz, Y. E., Sun, Y., Behrmann, C. A., Yu, J. J., Plas, D. R., Alayev, A., & Holz, M. K. (2017). ERRα regulates the growth of triple-negative breast cancer cells via S6K1-dependent mechanism. Signal Transduction and Targeted Therapy, 2, 17035. https://doi.org/10.1038/sigtrans.2017.35
doi: 10.1038/sigtrans.2017.35 pubmed: 28890840 pmcid: 5589335
Bhartiya, D., Sharma, N., Dutta, S., Kumar, P., Tripathi, A., & Tripathi, A. (2023). Very small embryonic-like stem cells transform into cancer stem cells and are novel candidates for detecting/monitoring cancer by a simple blood test. Stem Cells, 41, 310–318. https://doi.org/10.1093/stmcls/sxad015
doi: 10.1093/stmcls/sxad015 pubmed: 36881778
Atashzar, M. R., Baharlou, R., Karami, J., Abdollahi, H., Rezaei, R., Pourramezan, F., & Zoljalali Moghaddam, S. H. (2020). Cancer stem cells: A review from origin to therapeutic implications. Journal of Cellular Physiology, 235, 790–803. https://doi.org/10.1002/jcp.29044
doi: 10.1002/jcp.29044 pubmed: 31286518
Butti, R., Gunasekaran, V. P., Kumar, T. V. S., Banerjee, P., & Kundu, G. C. (2019). Breast cancer stem cells: Biology and therapeutic implications. International Journal of Biochemistry & Cell Biology, 107, 38–52. https://doi.org/10.1016/j.biocel.2018.12.001
doi: 10.1016/j.biocel.2018.12.001
Fillmore, C. M., & Kuperwasser, C. (2008). Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Research, 10, R25. https://doi.org/10.1186/bcr1982
doi: 10.1186/bcr1982 pubmed: 18366788 pmcid: 2397524
Grimshaw, M. J., Cooper, L., Papazisis, K., Coleman, J. A., Bohnenkamp, H. R., Chiapero-Stanke, L., Taylor-Papadimitriou, J., & Burchell, J. M. (2008). Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Research, 10, R52. https://doi.org/10.1186/bcr2106
doi: 10.1186/bcr2106 pubmed: 18541018 pmcid: 2481500
Ricardo, S., Vieira, A. F., Gerhard, R., Leitão, D., Pinto, R., Cameselle-Teijeiro, J. F., Milanezi, F., Schmitt, F., & Paredes, J. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology, 64, 937–946. https://doi.org/10.1136/jcp.2011.090456
doi: 10.1136/jcp.2011.090456 pubmed: 21680574
Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., Zhang, G., Wang, X., Dong, Z., Chen, F., & Cui, H. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy, 5, 8. https://doi.org/10.1038/s41392-020-0110-5
doi: 10.1038/s41392-020-0110-5 pubmed: 32296030 pmcid: 7005297
Chang, C., Kazmin, D., Jasper, J. S., Kunder, R., Zuercher, W. J., & McDonnell, D. P. (2011). The metabolic regulator ERRα, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell, 20, 500–510. https://doi.org/10.1016/j.ccr.2011.08.023
doi: 10.1016/j.ccr.2011.08.023 pubmed: 22014575 pmcid: 3199323
De Luca, A., Fiorillo, M., Peiris-Pagès, M., Ozsvari, B., Smith, D. L., Sanchez-Alvarez, R., Martinez-Outschoorn, U. E., Cappello, A. R., Pezzi, V., Lisanti, M. P., & Sotgia, F. (2015). Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget, 6, 14777–14795. https://doi.org/10.18632/oncotarget.4401
doi: 10.18632/oncotarget.4401 pubmed: 26087310 pmcid: 4558115
Lam, S. S., Mak, A. S., Yam, J. W., Cheung, A. N., Ngan, H. Y., & Wong, A. S. (2014). Targeting estrogen-related receptor alpha inhibits epithelial-to-mesenchymal transition and stem cell properties of ovarian cancer cells. Molecular Therapy, 22, 743–751. https://doi.org/10.1038/mt.2014.1
doi: 10.1038/mt.2014.1 pubmed: 24419103 pmcid: 3982489
Du, W., Goldstein, R., Jiang, Y., Aly, O., Cerchietti, L., Melnick, A., & Elemento, O. (2017). Effective combination therapies for B-cell lymphoma predicted by a virtual disease model. Cancer Research, 77, 1818–1830. https://doi.org/10.1158/0008-5472.CAN-16-0476
doi: 10.1158/0008-5472.CAN-16-0476 pubmed: 28130226 pmcid: 5392381
Shan, N. L., Shin, Y., Yang, G., Furmanski, P., & Suh, N. (2021). Breast cancer stem cells: A review of their characteristics and the agents that affect them. Molecular Carcinogenesis, 60, 73–100. https://doi.org/10.1002/mc.23277
doi: 10.1002/mc.23277 pubmed: 33428807 pmcid: 7855917
Garrido-Castro, A. C., Lin, N. U., & Polyak, K. (2019). Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discovery, 9, 176–198. https://doi.org/10.1158/2159-8290.CD-18-1177
doi: 10.1158/2159-8290.CD-18-1177 pubmed: 30679171 pmcid: 6387871
Lv, Y., Cang, W., Li, Q., Liao, X., Zhan, M., Deng, H., Li, S., Jin, W., Pang, Z., Qiu, X., Zhao, K., Chen, G., Qiu, L., & Huang, L. (2019). Erlotinib overcomes paclitaxel-resistant cancer stem cells by blocking the EGFR-CREB/GRβ-IL-6 axis in MUC1-positive cervical cancer. Oncogenesis, 8, 70. https://doi.org/10.1038/s41389-019-0179-2
doi: 10.1038/s41389-019-0179-2 pubmed: 31772161 pmcid: 6879758
Shackleton, M., Quintana, E., Fearon, E. R., & Morrison, S. J. (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 138, 822–829. https://doi.org/10.1016/j.cell.2009.08.017
doi: 10.1016/j.cell.2009.08.017 pubmed: 19737509
Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. Cell Communication and Signaling: CCS, 19, 19. https://doi.org/10.1186/s12964-020-00627-5
doi: 10.1186/s12964-020-00627-5 pubmed: 33588867 pmcid: 7885480
Takebe, N., Miele, L., Harris, P. J., Jeong, W., Bando, H., Kahn, M., Yang, S. X., & Ivy, S. P. (2015). Targeting notch, hedgehog, and wnt pathways in cancer stem cells: Clinical update. Nature Reviews Clinical Oncology, 12, 445–464. https://doi.org/10.1038/nrclinonc.2015.61
doi: 10.1038/nrclinonc.2015.61 pubmed: 25850553 pmcid: 4520755
Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M. A., & Daidone, M. G. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65, 5506–5511. https://doi.org/10.1158/0008-5472.CAN-05-0626
doi: 10.1158/0008-5472.CAN-05-0626 pubmed: 15994920
Robinson, M., Gilbert, S. F., Waters, J. A., Lujano-Olazaba, O., Lara, J., Alexander, L. J., Green, S. E., Burkeen, G. A., Patrus, O., Sarwar, Z., Holmberg, R., Wang, C., and House, C. D. (2021). Characterization of SOX2, OCT4 and NANOG in ovarian cancer tumor-initiating cells. Cancers (Basel), 13. https://doi.org/10.3390/cancers13020262
Wu, Y. M., Chen, Z. J., Jiang, G. M., Zhang, K. S., Liu, Q., Liang, S. W., Zhou, Y., Huang, H. B., Du, J., & Wang, H. S. (2016). Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways. Oncotarget, 7, 12568–12581. https://doi.org/10.18632/oncotarget.7276
doi: 10.18632/oncotarget.7276 pubmed: 26871469 pmcid: 4914305
Garcia-Heredia, J. M., Lucena-Cacace, A., Verdugo-Sivianes, E. M., Pérez, M., & Carnero, A. (2017). The cargo protein MAP17 (PDZK1IP1) regulates the cancer stem cell pool activating the notch pathway by abducting NUMB. Clinical Cancer Research, 23, 3871–3883. https://doi.org/10.1158/1078-0432.CCR-16-2358
doi: 10.1158/1078-0432.CCR-16-2358 pubmed: 28153862
Krishna, B. M., Jana, S., Singhal, J., Horne, D., Awasthi, S., Salgia, R., & Singhal, S. S. (2019). Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Letters, 461, 123–131. https://doi.org/10.1016/j.canlet.2019.07.012
doi: 10.1016/j.canlet.2019.07.012 pubmed: 31326555 pmcid: 9003668
Klinakis, A., Szabolcs, M., Politi, K., Kiaris, H., Artavanis-Tsakonas, S., & Efstratiadis, A. (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proceedings of the National Academy of Science U S A, 103, 9262–9267. https://doi.org/10.1073/pnas.0603371103
doi: 10.1073/pnas.0603371103
Jang, G. B., Hong, I. S., Kim, R. J., Lee, S. Y., Park, S. J., Lee, E. S., Park, J. H., Yun, C. H., Chung, J. U., Lee, K. J., Lee, H. Y., & Nam, J. S. (2015). Wnt/β-Catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Research, 75, 1691–1702. https://doi.org/10.1158/0008-5472.CAN-14-2041
doi: 10.1158/0008-5472.CAN-14-2041 pubmed: 25660951
Ravindran, G., Sawant, S. S., Hague, A., Kingsley, K., & Devaraj, H. (2015). Association of differential β-catenin expression with Oct-4 and nanog in oral squamous cell carcinoma and their correlation with clinicopathological factors and prognosis. Head and Neck, 37, 982–993. https://doi.org/10.1002/hed.23699
doi: 10.1002/hed.23699 pubmed: 24700702

Auteurs

Kartik Muduli (K)

School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.

Monica Prusty (M)

School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.

Jagannath Pradhan (J)

School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.

Archana Priyadarshini Samal (AP)

School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.

Bikash Sahu (B)

School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.

Debanjan Singha Roy (DS)

School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.

K Sony Reddy (KS)

School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.

Selvakumar Elangovan (S)

School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India. selvakumar@kiitbiotech.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH