Non-destructive detection and recognition of pesticide residue levels on cauliflowers using visible/near-infrared spectroscopy combined with chemometrics.


Journal

Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052

Informations de publication

Date de publication:
Oct 2023
Historique:
revised: 20 06 2023
received: 18 04 2023
accepted: 14 07 2023
medline: 23 10 2023
pubmed: 17 8 2023
entrez: 17 8 2023
Statut: ppublish

Résumé

In this study, two prediction models were developed using visible/near-infrared (Vis/NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) and least squares support vector machine (LS-SVM) for the detection of pesticide residues of avermectin, dichlorvos, and chlorothalonil at different concentration levels on the surface of cauliflowers. Five samples of each of the three different types of pesticide were prepared at different concentrations and sprayed in groups on the surface of the corresponding cauliflower samples. Utilizing the spectral data collected in the Vis/NIR as input values, comparison and analysis of preprocessed spectral data, and regression coefficient (RC), successive projections algorithm (SPA), and competitive adaptive reweighted sampling (CARS) were used in turn to downscale the data to select the main feature wavelengths, and PLS-DA and LS-SVM models were built for comparison. The results showed that the RC-LS-SVM was the best discriminant model for detecting avermectin residues concentration on the surface of cauliflowers, with a prediction set discriminant accuracy of 98.33%. For detecting different concentrations of dichlorvos, the SPA-LS-SVM had the best predictive accuracy of 95%. The accuracy of the model based on CARS-PLS-DA to identify chlorothalonil at different concentration levels on cauliflower surfaces reached 93.33%. The results demonstrated that the Vis/NIR spectroscopy combined with chemometrics could quickly and effectively identify pesticide residues on cauliflower surfaces, affording a certain reference for the rapid recognition of different pesticide residue concentrations on cauliflower surfaces. PRACTICAL APPLICATION: Vis/NIR spectroscopy can detect the concentration levels of pesticide residues on the surface of cauliflowers and help food regulators quickly and non-destructively detect traces of pesticides in food, providing a guarantee for food safety. The technique also provides a basis for determining pesticide residue concentrations on the surface of other vegetables.

Identifiants

pubmed: 37589297
doi: 10.1111/1750-3841.16728
doi:

Substances chimiques

Pesticide Residues 0
tetrachloroisophthalonitrile J718M71A7A
avermectin 73989-17-0
Dichlorvos 7U370BPS14

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4327-4342

Subventions

Organisme : National Natural Science Foundation of China
ID : 31801632

Informations de copyright

© 2023 Institute of Food Technologists.

Références

Araújo, M. C. U., Saldanha, T. C. B., Galvao, R. K. H., Yoneyama, T., Chame, H. C., & Visani, V. (2001). The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 57(2), 65-73. https://doi.org/10.1016/S0169-7439(01)00119-8
Bai, S. H., & Ogbourne, S. (2016). Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere, 154, 204-214. https://doi.org/10.1016/j.chemosphere.2016.03.113
Bi, Y., Yuan, K., Xiao, W., Wu, J., Shi, C., Xia, J., Chu, G., Zhang, G., & Zhou, G. (2016). A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Analytica Chimica Acta, 909, 30-40. https://doi.org/10.1016/j.aca.2016.01.010
Chen, J., Peng, Y., Li, Y., Wang, W., & Wu, J. (2011). A method for determining organophosphorus pesticide concentration based on near-infrared spectroscopy. Transactions of the ASABE, 54(3), 1025-1030. https://doi.org/10.13031/2013.37087
Cho, S.-K., Abd El-Aty, A. M., Rahman, M. M., Choi, J.-H., & Shim, J.-H. (2014). Simultaneous multi-determination and transfer of eight pesticide residues from green tea leaves to infusion using gas chromatography. Food Chemistry, 165, 532-539. https://doi.org/10.1016/j.foodchem.2014.05.145
Deivendran, A., Kumari, B., & Yadav, G. S. (2006). Dissipation of endosulfan and dichlorvos residues in/on cauliflower curds. Environmental Monitoring and Assessment, 116(1), 307-313. https://doi.org/10.1007/s10661-006-7394-y
Ditya, P., Das, S. P., Sarkar, P. K., & Bhattacharyya, A. (2010). Degradation dynamics of chlorfenapyr residue in chili, cabbage and soil. Bulletin of Environmental Contamination and Toxicology, 84(5), 602-605. https://doi.org/10.1007/s00128-010-9994-z
Fen, D., Tiansheng, H., Kun, Z., & Ya, H. (2010). Nondestructive detection of pesticide residue on longan surface based on near infrared spectroscopy. 2010 International Conference on Intelligent Computation Technology and Automation, Changsha, China. https://doi.org/10.1109/ICICTA.2010.477
Golge, O., Cinpolat, S., & Kabak, B. (2021). Quantification of pesticide residues in gherkins by liquid and gas chromatography coupled to tandem mass spectrometry. Journal of Food Composition and Analysis, 96, 103755. https://doi.org/10.1016/j.jfca.2020.103755
Gowen, A. A., Downey, G., Esquerre, C., & O'Donnell, C. P. (2011). Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients. Journal of Chemometrics, 25(7), 375-381. https://doi.org/10.1002/cem.1349
Guo, J., Huang, H., He, X., Cai, J., Zeng, Z., Ma, C., Lü, E., Shen, Q., & Liu, Y. (2023). Improving the detection accuracy of the nitrogen content of fresh tea leaves by combining FT-NIR with moisture removal method. Food Chemistry, 405, 134905. https://doi.org/10.1016/j.foodchem.2022.134905
Jamshidi, B., Mohajerani, E., Jamshidi, J., Minaei, S., & Sharifi, A. (2015). Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy. Food Additives & Contaminants: Part A, 32(6), 857-863. https://doi.org/10.1080/19440049.2015.1031192
Lapcharoensuk, R., & Nakawajana, N. (2018). Identification of syrup type using Fourier transform-near infrared spectroscopy with multivariate classification methods. Journal of Innovative Optical Health Sciences, 11(02), 1750019. https://doi.org/10.1142/S1793545817500195
Li, F., Wang, X., Yang, M., Zhu, M., Chen, W., Li, Q., Sun, D., Bi, X., Maletskyi, Z., & Ratnaweera, H. (2022). Detection limits of antibiotics in wastewater by real-time UV-VIS spectrometry at different optical path length. Processes, 10(12), 2614. https://doi.org/10.3390/pr10122614
Li, N., Xia, Y., Xu, Y., Li, Y., Jia, Q., & Qiu, J. (2022). Identification and analysis of the degradation products of chlorothalonil in vegetables. Journal of Chromatography A, 1686, 463647. https://doi.org/10.1016/j.chroma.2022.463647
Liu, F., & He, Y. (2007). Use of visible and near infrared spectroscopy and least squares-support vector machine to determine soluble solids content and pH of cola beverage. Journal of Agricultural and Food Chemistry, 55(22), 8883-8888. https://doi.org/10.1021/jf072057b
Lu, Y., Li, X., Li, W., Shen, T., He, Z., Zhang, M., Zhang, H., Sun, Y., & Liu, F. (2021). Detection of chlorpyrifos and carbendazim residues in the cabbage using visible/near-infrared spectroscopy combined with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 257, 119759. https://doi.org/10.1016/j.saa.2021.119759
Luo, W., Du, Y., & Zhang, H. (2016). Discrimination of varieties of cabbage with near infrared spectra based on principal component analysis and successive projections algorithm. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu, 36(11), 3536-3541.
MacLachlan, D. J., & Hamilton, D. (2010). Estimation methods for maximum residue limits for pesticides. Regulatory Toxicology and Pharmacology, 58(2), 208-218. https://doi.org/10.1016/j.yrtph.2010.05.012
Máquina, A. D. V., Souza, L. M. D., Gontijo, L. C., Santos, D. Q., & Borges Neto, W. (2017). Characterization of biodiesel by infrared spectroscopy with partial least square discriminant analysis. Analytical Letters, 50(13), 2117-2128. https://doi.org/10.1080/00032719.2016.1267186
Mishra, P., Rutledge, D. N., Roger, J.-M., Wali, K., & Khan, H. A. (2021). Chemometric pre-processing can negatively affect the performance of near-infrared spectroscopy models for fruit quality prediction. Talanta, 229, 122303. https://doi.org/10.1016/j.talanta.2021.122303
Nazarloo, A. S., Sharabiani, V. R., Gilandeh, Y. A., Taghinezhad, E., & Szymanek, M. (2021). Evaluation of different models for non-destructive detection of tomato pesticide residues based on near-infrared spectroscopy. Sensors, 21(9), 3032. https://doi.org/10.3390/s21093032
Nel, W. J., Duong, T. A., Beer, Z. W., & Wingfield, M. J. (2019). Black root rot: A long known but little understood disease. Plant Pathology, 68(5), 834-842. https://doi.org/10.1111/ppa.13011
Podsędek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Science and Technology, 40(1), 1-11. https://doi.org/10.1016/j.lwt.2005.07.023
Rinnan, Å., Van Den Berg, F., & Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201-1222. https://doi.org/10.1016/j.trac.2009.07.007
Sánchez, M.-T., Flores-Rojas, K., Guerrero, J. E., Garrido-Varo, A., & Pérez-Marín, D. (2010). Measurement of pesticide residues in peppers by near-infrared reflectance spectroscopy. Pest Management Science: Formerly Pesticide Science, 66(6), 580-586. https://doi.org/10.1002/ps.1910
Silué, D., Laviec, C., & Tirilly, Y. (1995). New sources of resistance in cauliflower (Brassica oleracea var. Botrytis) to crucifer downy mildew caused by Peronospora parasitica. Journal of Phytopathology, 143(11-12), 659-661. https://doi.org/10.1111/j.1439-0434.1995.tb00219.x
Su, W.-H., Sun, D.-W., He, J.-G., & Zhang, L.-B. (2017). Variation analysis in spectral indices of volatile chlorpyrifos and non-volatile imidacloprid in jujube (Ziziphus jujuba Mill.) using near-infrared hyperspectral imaging (NIR-HSI) and gas chromatograph-mass spectrometry (GC-MS). Computers and Electronics in Agriculture, 139, 41-55. https://doi.org/10.1016/j.compag.2017.04.017
Sun, J., Zhou, X., Mao, H., Wu, X., Zhang, X., & Li, Q. (2017). Discrimination of pesticide residues in lettuce based on chemical molecular structure coupled with wavelet transform and near infrared hyperspectra. Journal of Food Process Engineering, 40(4), e12509. https://doi.org/10.1111/jfpe.12509
Sun, Y., Liu, N., Kang, X., Zhao, Y., Cao, R., Ning, J., & Zhou, D. (2021). Rapid identification of geographical origin of sea cucumbers Apostichopus japonicus using FT-NIR coupled with light gradient boosting machine. Food Control, 124, 107883. https://doi.org/10.1016/j.foodcont.2021.107883
Walorczyk, S., Drożdżyński, D., & Kierzek, R. (2015). Determination of pesticide residues in samples of green minor crops by gas chromatography and ultra performance liquid chromatography coupled to tandem quadrupole mass spectrometry. Talanta, 132, 197-204. https://doi.org/10.1016/j.talanta.2014.08.073
Watanabe, E., Kobara, Y., Baba, K., & Eun, H. (2015). Determination of seven neonicotinoid insecticides in cucumber and eggplant by water-based extraction and high-performance liquid chromatography. Analytical Letters, 48(2), 213-220. https://doi.org/10.1080/00032719.2014.938346
Xue, L., Cai, J., Li, J., & Liu, M. (2012). Application of particle swarm optimization (PSO) algorithm to determine dichlorvos residue on the surface of navel orange with Vis-NIR spectroscopy. Procedia Engineering, 29, 4124-4128. https://doi.org/10.1016/j.proeng.2012.01.631
Yang, D., Lu, A., Ren, D., & Wang, J. (2017). Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm. Infrared Physics & Technology, 86, 23-24. https://doi.org/10.1016/j.infrared.2017.08.013
Yao, L., Shi, X., Pan, T., & Chen, J. (2021). Wavelength selection method based on absorbance value optimization to near-infrared spectroscopic analysis. Frontiers in Physics, 9, 663573. https://doi.org/10.3389/fphy.2021.663573
Yazici, A., Tiryaki, G. Y., & Ayvaz, H. (2020). Determination of pesticide residual levels in strawberry by near-infrared spectroscopy. Journal of the Science of Food and Agriculture, 100(5), 1980-1989. https://doi.org/10.1002/jsfa.10211
Zhang, M., Zhang, B., Li, H., Shen, M., Tian, S., & Zhang, H. (2020). Determination of bagged ‘Fuji’ apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm. Infrared Physics & Technology, 111, 103529. https://doi.org/10.1016/j.infrared.2020.103529
Zhang, Z.-Y., Liu, X.-J., Yu, X.-Y., Zhang, C.-Z., & Hong, X.-Y. (2007). Pestic-ide residues in the spring cabbage (Brassica oleracea L. var. Capitata) grown in open field. Food Control, 18(6), 723-730. https://doi.org/10.1016/j.foodcont.2006.04.001
Zhu, X., Li, W., Wu, R., Liu, P., Hu, X., Xu, L., Xiong, Z., Wen, Y., & Ai, S. (2021). Rapid detection of chlorpyrifos pesticide residue in tea using surface-enhanced Raman spectroscopy combined with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 250, 119366. https://doi.org/10.1016/j.saa.2020.119366

Auteurs

Mingyue Zhang (M)

College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China.

Jianxin Xue (J)

College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China.

Yaodi Li (Y)

College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China.

Junyi Yin (J)

College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China.

Yang Liu (Y)

College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China.

Kai Wang (K)

College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China.

Zezhen Li (Z)

College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Perceptions of the neighbourhood food environment and food insecurity of families with children during the Covid-19 pandemic.

Irene Carolina Sousa Justiniano, Matheus Santos Cordeiro, Hillary Nascimento Coletro et al.
1.00
Humans COVID-19 Food Insecurity Cross-Sectional Studies Female
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH