Lipid saturation controls nuclear envelope function.
Journal
Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
08
02
2023
accepted:
18
07
2023
medline:
13
9
2023
pubmed:
18
8
2023
entrez:
17
8
2023
Statut:
ppublish
Résumé
The nuclear envelope (NE) is a spherical double membrane with elastic properties. How NE shape and elasticity are regulated by lipid chemistry is unknown. Here we discover lipid acyl chain unsaturation as essential for NE and nuclear pore complex (NPC) architecture and function. Increased lipid saturation rigidifies the NE and the endoplasmic reticulum into planar, polygonal membranes, which are fracture prone. These membranes exhibit a micron-scale segregation of lipids into ordered and disordered phases, excluding NPCs from the ordered phase. Balanced lipid saturation is required for NPC integrity, pore membrane curvature and nucleocytoplasmic transport. Oxygen deprivation amplifies the impact of saturated lipids, causing NE rigidification and rupture. Conversely, lipid droplets buffer saturated lipids to preserve NE architecture. Our study uncovers a fundamental link between lipid acyl chain structure and the integrity of the cell nucleus with implications for nuclear membrane malfunction in ischaemic tissues.
Identifiants
pubmed: 37591950
doi: 10.1038/s41556-023-01207-8
pii: 10.1038/s41556-023-01207-8
pmc: PMC10495262
doi:
Substances chimiques
Lipids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1290-1302Informations de copyright
© 2023. The Author(s).
Références
Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).
pubmed: 29410529
doi: 10.1038/nrm.2017.138
van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).
pubmed: 18216768
pmcid: 2642958
doi: 10.1038/nrm2330
Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).
pubmed: 16365634
doi: 10.1038/nrm1784
West, M., Zurek, N., Hoenger, A. & Voeltz, G. K. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193, 333–346 (2011).
pubmed: 21502358
pmcid: 3080256
doi: 10.1083/jcb.201011039
Ungricht, R. & Kutay, U. Mechanisms and functions of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/nrm.2016.153 (2017).
Akey, C. W. et al. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 185, 361–378 e325 (2022).
pubmed: 34982960
pmcid: 8928745
doi: 10.1016/j.cell.2021.12.015
Allegretti, M. et al. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 586, 796 (2020).
pubmed: 32879490
doi: 10.1038/s41586-020-2670-5
Bley, C. J. et al. Architecture of the cytoplasmic face of the nuclear pore. Science 376, eabm9129 (2022).
pubmed: 35679405
pmcid: 9348906
doi: 10.1126/science.abm9129
Petrovic, S. et al. Architecture of the linker-scaffold in the nuclear pore. Science 376, eabm9798 (2022).
pubmed: 35679425
pmcid: 9867570
doi: 10.1126/science.abm9798
Schuller, A. P. et al. The cellular environment shapes the nuclear pore complex architecture. Nature 598, 667–671 (2021).
pubmed: 34646014
pmcid: 8550940
doi: 10.1038/s41586-021-03985-3
Cibulka, J., Bisaccia, F., Radisavljevic, K., Gudino Carrillo, R. M. & Kohler, A. Assembly principle of a membrane-anchored nuclear pore basket scaffold. Sci. Adv. 8, eabl6863 (2022).
pubmed: 35148185
pmcid: 8836807
doi: 10.1126/sciadv.abl6863
Drin, G. et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14, 138–146 (2007).
pubmed: 17220896
doi: 10.1038/nsmb1194
Meszaros, N. et al. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curvature. Dev. Cell 33, 285–298 (2015).
pubmed: 25942622
pmcid: 4425464
doi: 10.1016/j.devcel.2015.02.017
Vollmer, B. et al. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J. 31, 4072–4084 (2012).
pubmed: 22960634
pmcid: 3474928
doi: 10.1038/emboj.2012.256
Zimmerli, C. E. et al. Nuclear pores dilate and constrict in cellulo. Science 374, eabd9776 (2021).
pubmed: 34762489
doi: 10.1126/science.abd9776
Lomakin, A. J. et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 370, eaba2894 (2020).
pubmed: 33060332
pmcid: 8059074
doi: 10.1126/science.aba2894
Venturini, V. et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science 370, eaba2644 (2020).
pubmed: 33060331
doi: 10.1126/science.aba2644
Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 e1314 (2017).
pubmed: 29107331
doi: 10.1016/j.cell.2017.10.008
Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).
pubmed: 27013428
pmcid: 4833568
doi: 10.1126/science.aad7297
Kinugasa, Y. et al. The very-long-chain fatty acid elongase Elo2 rescues lethal defects associated with loss of the nuclear barrier function in fission yeast cells. J. Cell Sci. 132, jcs229021 (2019).
pubmed: 30975915
doi: 10.1242/jcs.229021
Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).
pubmed: 27013426
doi: 10.1126/science.aad7611
Thaller, D. J. et al. Direct binding of ESCRT protein Chm7 to phosphatidic acid-rich membranes at nuclear envelope herniations. J. Cell Biol. 220, e202004222 (2021).
pubmed: 33464310
pmcid: 7816628
doi: 10.1083/jcb.202004222
Barelli, H. & Antonny, B. Lipid unsaturation and organelle dynamics. Curr. Opin. Cell Biol. 41, 25–32 (2016).
pubmed: 27062546
doi: 10.1016/j.ceb.2016.03.012
Martin, C. E., Oh, C. S. & Jiang, Y. D. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim. Biophys. Acta 1771, 271–285 (2007).
pubmed: 16920014
doi: 10.1016/j.bbalip.2006.06.010
Ballweg, S. et al. Regulation of lipid saturation without sensing membrane fluidity. Nat. Commun. 11, 756 (2020).
pubmed: 32029718
pmcid: 7005026
doi: 10.1038/s41467-020-14528-1
Covino, R. et al. A eukaryotic sensor for membrane lipid saturation. Mol. cell 63, 49–59 (2016).
pubmed: 27320200
doi: 10.1016/j.molcel.2016.05.015
De Smet, C. H. et al. The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p. Mol. Biol. cell 23, 1146–1156 (2012).
pubmed: 22323296
pmcid: 3315803
doi: 10.1091/mbc.e11-07-0624
Brookheart, R. T., Michel, C. I. & Schaffer, J. E. As a matter of fat. Cell Metab. 10, 9–12 (2009).
pubmed: 19583949
pmcid: 2751821
doi: 10.1016/j.cmet.2009.03.011
Petschnigg, J. et al. Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J. Biol. Chem. 284, 30981–30993 (2009).
pubmed: 19608739
pmcid: 2781499
doi: 10.1074/jbc.M109.024752
Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973).
pubmed: 4273690
doi: 10.1515/znc-1973-11-1209
Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).
pubmed: 10866959
pmcid: 1300937
doi: 10.1016/S0006-3495(00)76295-3
Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003).
pubmed: 14574408
doi: 10.1038/nature02013
Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).
pubmed: 11222302
pmcid: 1301333
doi: 10.1016/S0006-3495(01)76114-0
Veatch, S. L. & Keller, S. L. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101 (2002).
pubmed: 12484857
doi: 10.1103/PhysRevLett.89.268101
Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).
pubmed: 15791208
pmcid: 1142567
doi: 10.1038/sj.emboj.7600631
Gohrbandt, M. et al. Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. EMBO J. 41, e109800 (2022).
pubmed: 35037270
pmcid: 8886542
doi: 10.15252/embj.2021109800
King, C., Sengupta, P., Seo, A. Y. & Lippincott-Schwartz, J. ER membranes exhibit phase behavior at sites of organelle contact. Proc. Natl Acad. Sci. USA 117, 7225–7235 (2020).
pubmed: 32179693
pmcid: 7132286
doi: 10.1073/pnas.1910854117
Leveille, C. L., Cornell, C. E., Merz, A. J. & Keller, S. L. Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures. Proc. Natl Acad. Sci. USA 119, e2116007119 (2022).
pubmed: 35046036
pmcid: 8795566
doi: 10.1073/pnas.2116007119
Shen, Y. et al. Metabolic activity induces membrane phase separation in endoplasmic reticulum. Proc. Natl Acad. Sci. USA 114, 13394–13399 (2017).
pubmed: 29196526
pmcid: 5754785
doi: 10.1073/pnas.1712555114
Toulmay, A. & Prinz, W. A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202, 35–44 (2013).
pubmed: 23836928
pmcid: 3704982
doi: 10.1083/jcb.201301039
Romanauska, A. & Kohler, A. The inner nuclear membrane is a metabolically active territory that generates nuclear lipid droplets. Cell 174, 700–715 e718 (2018).
pubmed: 29937227
pmcid: 6371920
doi: 10.1016/j.cell.2018.05.047
Tsuji, T. et al. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc. Natl Acad. Sci. USA 116, 13368–13373 (2019).
pubmed: 31217287
pmcid: 6613088
doi: 10.1073/pnas.1822025116
Vancura, A. & Haldar, D. Purification and characterization of glycerophosphate acyltransferase from rat liver mitochondria. J. Biol. Chem. 269, 27209–27215 (1994).
pubmed: 7961630
doi: 10.1016/S0021-9258(18)46970-0
Kiegerl, B. et al. Phosphorylation of the lipid droplet localized glycerol3phosphate acyltransferase Gpt2 prevents a futile triacylglycerol cycle in yeast. Biochim. Biophys. Acta 1864, 158509 (2019).
doi: 10.1016/j.bbalip.2019.08.005
Piccolis, M. et al. Probing the global cellular responses to lipotoxicity caused by saturated fatty acids. Mol. Cell 74, 32–44 e38 (2019).
pubmed: 30846318
pmcid: 7696670
doi: 10.1016/j.molcel.2019.01.036
Romanauska, A. & Kohler, A. Reprogrammed lipid metabolism protects inner nuclear membrane against unsaturated fat. Dev. Cell 56, 2562–2578 e2563 (2021).
pubmed: 34407429
pmcid: 8480995
doi: 10.1016/j.devcel.2021.07.018
Klose, C. et al. Yeast lipids can phase-separate into micrometer-scale membrane domains. J. Biol. Chem. 285, 30224–30232 (2010).
pubmed: 20647309
pmcid: 2943255
doi: 10.1074/jbc.M110.123554
Terweij, M. et al. Recombination-induced tag exchange (RITE) cassette series to monitor protein dynamics in Saccharomyces cerevisiae. G3 3, 1261–1272 (2013).
pubmed: 23708297
pmcid: 3737166
doi: 10.1534/g3.113.006213
Andersen, O. S. & Koeppe, R. E. 2nd Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).
pubmed: 17263662
doi: 10.1146/annurev.biophys.36.040306.132643
Hao, Q., Zhang, B., Yuan, K., Shi, H. & Blobel, G. Electron microscopy of Chaetomium pom152 shows the assembly of ten-bead string. Cell Discov. 4, 56 (2018).
pubmed: 30245846
pmcid: 6141588
doi: 10.1038/s41421-018-0057-7
Upla, P. et al. Molecular architecture of the major membrane ring component of the nuclear pore complex. Structure 25, 434–445 (2017).
pubmed: 28162953
pmcid: 5342941
doi: 10.1016/j.str.2017.01.006
Owen, D. M., Rentero, C., Magenau, A., Abu-Siniyeh, A. & Gaus, K. Quantitative imaging of membrane lipid order in cells and organisms. Nat. Protoc. 7, 24–35 (2011).
pubmed: 22157973
doi: 10.1038/nprot.2011.419
Heberle, F. A. & Feigenson, G. W. Phase separation in lipid membranes. Cold Spring Harb. Perspect. Biol. 3, a004630 (2011).
pubmed: 21441593
pmcid: 3062215
doi: 10.1101/cshperspect.a004630
Rayermann, S. P., Rayermann, G. E., Cornell, C. E., Merz, A. J. & Keller, S. L. Hallmarks of reversible separation of living, unperturbed cell membranes into two liquid phases. Biophys. J. 113, 2425–2432 (2017).
pubmed: 29211996
pmcid: 5768487
doi: 10.1016/j.bpj.2017.09.029
Popken, P., Ghavami, A., Onck, P. R., Poolman, B. & Veenhoff, L. M. Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex. Mol. Biol. Cell 26, 1386–1394 (2015).
pubmed: 25631821
pmcid: 4454183
doi: 10.1091/mbc.E14-07-1175
Bai, Y. et al. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524, 252–256 (2015).
pubmed: 26098370
pmcid: 4689147
doi: 10.1038/nature14549
Wang, H. et al. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat. Struct. Mol. Biol. 22, 581–585 (2015).
pubmed: 26098317
doi: 10.1038/nsmb.3049
Lusk, C. P. & Ader, N. R. CHMPions of repair: emerging perspectives on sensing and repairing the nuclear envelope barrier. Curr. Opin. Cell Biol. 64, 25–33 (2020).
pubmed: 32105978
pmcid: 7371540
doi: 10.1016/j.ceb.2020.01.011
Silvius, J. R., Brown, P. M. & O’Leary, T. J. Role of head group structure in the phase behavior of amino phospholipids. 1. Hydrated and dehydrated lamellar phases of saturated phosphatidylethanolamine analogues. Biochemistry 25, 4249–4258 (1986).
pubmed: 3756137
doi: 10.1021/bi00363a012
Kaliszewski, P. et al. Enhanced levels of Pis1p (phosphatidylinositol synthase) improve the growth of Saccharomyces cerevisiae cells deficient in Rsp5 ubiquitin ligase. Biochem. J. 395, 173–181 (2006).
pubmed: 16363994
pmcid: 1409703
doi: 10.1042/BJ20051726
Kralt, A. et al. An amphipathic helix in Brl1 is required for nuclear pore complex biogenesis in S. cerevisiae. eLife 11, e78385 (2022).
pubmed: 36000978
pmcid: 9402233
doi: 10.7554/eLife.78385
Otsuka, S. et al. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. eLife 5, e19071 (2016).
pubmed: 27630123
pmcid: 5065316
doi: 10.7554/eLife.19071
Bigay, J. & Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886–895 (2012).
pubmed: 23153485
doi: 10.1016/j.devcel.2012.10.009
Garcia-Saez, A. J., Chiantia, S. & Schwille, P. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282, 33537–33544 (2007).
pubmed: 17848582
doi: 10.1074/jbc.M706162200
Angebault, C. et al. Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J. Infect. Dis. 208, 1705–1716 (2013).
pubmed: 23904289
doi: 10.1093/infdis/jit389
Muller, L. A., Lucas, J. E., Georgianna, D. R. & McCusker, J. H. Genome-wide association analysis of clinical vs. nonclinical origin provides insights into Saccharomyces cerevisiae pathogenesis. Mol. Ecol. 20, 4085–4097 (2011).
pubmed: 21880084
pmcid: 3183415
doi: 10.1111/j.1365-294X.2011.05225.x
Rizzetto, L., De Filippo, C. & Cavalieri, D. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur. J. Immunol. 44, 3166–3181 (2014).
pubmed: 25257052
doi: 10.1002/eji.201344403
Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).
pubmed: 27658529
doi: 10.1038/nrc.2016.89
Kwast, K. E., Burke, P. V., Staahl, B. T. & Poyton, R. O. Oxygen sensing in yeast: evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. Proc. Natl Acad. Sci. USA 96, 5446–5451 (1999).
pubmed: 10318903
pmcid: 21879
doi: 10.1073/pnas.96.10.5446
Lewis, C. A. et al. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme. Oncogene 34, 5128–5140 (2015).
pubmed: 25619842
doi: 10.1038/onc.2014.439
Li, J. et al. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1α. Physiol. Genomics 25, 450–457 (2006).
pubmed: 16507783
doi: 10.1152/physiolgenomics.00293.2005
Andreasen, A. A. & Stier, T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell Comp. Physiol. 43, 271–281 (1954).
pubmed: 13192151
doi: 10.1002/jcp.1030430303
Bensaad, K. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 9, 349–365 (2014).
pubmed: 25263561
doi: 10.1016/j.celrep.2014.08.056
Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882–8887 (2013).
pubmed: 23671091
pmcid: 3670379
doi: 10.1073/pnas.1307237110
Maciejowski, J. & Hatch, E. M. Nuclear membrane rupture and Its consequences. Annu. Rev. Cell Dev. Biol. 36, 85–114 (2020).
pubmed: 32692592
pmcid: 8191142
doi: 10.1146/annurev-cellbio-020520-120627
Mazeres, S., Fereidouni, F. & Joly, E. Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000Res 6, 763 (2017).
pubmed: 28663788
pmcid: 5473435
doi: 10.12688/f1000research.11577.1
Liu, Q., Siloto, R. M., Snyder, C. L. & Weselake, R. J. Functional and topological analysis of yeast acyl-CoA:diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis. J. Biol. Chem. 286, 13115–13126 (2011).
pubmed: 21321129
pmcid: 3075658
doi: 10.1074/jbc.M110.204412
Willis, S. D., Hossian, A., Evans, N. & Hickman, M. J. Measuring mRNA levels over time during the yeast S. cerevisiae hypoxic response. J. Vis. Exp. https://doi.org/10.3791/56226 (2017).
Weinberger, A. et al. Gel-assisted formation of giant unilamellar vesicles. Biophys. J. 105, 154–164 (2013).
pubmed: 23823234
pmcid: 3699747
doi: 10.1016/j.bpj.2013.05.024
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
pubmed: 8742726
doi: 10.1006/jsbi.1996.0013
Ejsing, C. S. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl Acad. Sci. USA 106, 2136–2141 (2009).
pubmed: 19174513
pmcid: 2650121
doi: 10.1073/pnas.0811700106
Klose, C. et al. Flexibility of a eukaryotic lipidome—insights from yeast lipidomics. PLoS ONE 7, e35063 (2012).
pubmed: 22529973
pmcid: 3329542
doi: 10.1371/journal.pone.0035063
Surma, M. A. et al. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur. J. Lipid Sci. Technol. 117, 1540–1549 (2015).
pubmed: 26494980
pmcid: 4606567
doi: 10.1002/ejlt.201500145
Liebisch, G. et al. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI–MS/MS). Biochim. Biophys. Acta 1761, 121–128 (2006).
pubmed: 16458590
doi: 10.1016/j.bbalip.2005.12.007
Herzog, R. et al. LipidXplorer: a software for consensual cross-platform lipidomics. PLoS ONE 7, e29851 (2012).
pubmed: 22272252
pmcid: 3260173
doi: 10.1371/journal.pone.0029851
Herzog, R. et al. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 12, R8 (2011).
pubmed: 21247462
pmcid: 3091306
doi: 10.1186/gb-2011-12-1-r8