Use of retrotransposon based iPBS markers for determination of genetic relationship among some Chestnut Cultivars (Castanea sativa Mill.) in Türkiye.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 09 06 2023
accepted: 18 07 2023
medline: 26 9 2023
pubmed: 24 8 2023
entrez: 24 8 2023
Statut: ppublish

Résumé

The aim of this study was to reveal the genetic relationships among some economically important chestnut cultivars for Türkiye by using retrotransposon-based inter primer binding site (iPBS) markers. In this study, a total of 19 iPBS markers were used to determine the genetic relationships among 11 chestnut cultivars (Castanea sativa Mill.). In the study, chestnut cultivars named Hacıömer, Osmanoğlu, Sarıaşlama, Erfelek, Kemer, Işıklar, Şekerci, Siyah Bursa, Tülü, Bouche De Betizac and Marigoule were the preferred cultivars utilised. Using the online marker efficiency calculator (iMEC), some indices of polymorphism, such as the mean heterozygosity, polymorphism information content, marker index and discriminating power, were determined. In addition, the size ranges of alleles, number of average alleles, number of total alleles, number of polymorphic alleles, and polymorphism rate were determined at a successful level. The chestnut cultivars of Hacıömer and Şekerci were determined to be the most similar cultivars with a similarity coefficient value of 0.924, and they formed a subgroup together with the chestnut cultivars Osmanoğlu and Erfelek, showing close similarity with these two cultivars. The use of iPBS markers in chestnuts in Türkiye was carried out for the first time in this study. The power of iPBS markers to evaluate the genetic relationship for our preferred chestnut cultivars was revealed. For this reason, it has emerged that it will be useful in the molecular characterization of both genotypes in natural chestnut populations and chestnut breeding materials such as varieties and cultivars in chestnut breeding programs.

Sections du résumé

BACKGROUND BACKGROUND
The aim of this study was to reveal the genetic relationships among some economically important chestnut cultivars for Türkiye by using retrotransposon-based inter primer binding site (iPBS) markers.
METHODS AND RESULTS RESULTS
In this study, a total of 19 iPBS markers were used to determine the genetic relationships among 11 chestnut cultivars (Castanea sativa Mill.). In the study, chestnut cultivars named Hacıömer, Osmanoğlu, Sarıaşlama, Erfelek, Kemer, Işıklar, Şekerci, Siyah Bursa, Tülü, Bouche De Betizac and Marigoule were the preferred cultivars utilised. Using the online marker efficiency calculator (iMEC), some indices of polymorphism, such as the mean heterozygosity, polymorphism information content, marker index and discriminating power, were determined. In addition, the size ranges of alleles, number of average alleles, number of total alleles, number of polymorphic alleles, and polymorphism rate were determined at a successful level. The chestnut cultivars of Hacıömer and Şekerci were determined to be the most similar cultivars with a similarity coefficient value of 0.924, and they formed a subgroup together with the chestnut cultivars Osmanoğlu and Erfelek, showing close similarity with these two cultivars.
CONCLUSIONS CONCLUSIONS
The use of iPBS markers in chestnuts in Türkiye was carried out for the first time in this study. The power of iPBS markers to evaluate the genetic relationship for our preferred chestnut cultivars was revealed. For this reason, it has emerged that it will be useful in the molecular characterization of both genotypes in natural chestnut populations and chestnut breeding materials such as varieties and cultivars in chestnut breeding programs.

Identifiants

pubmed: 37615924
doi: 10.1007/s11033-023-08697-7
pii: 10.1007/s11033-023-08697-7
doi:

Substances chimiques

Retroelements 0
DNA Primers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8397-8405

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Pereira-Lorenzo S, Ballester A, Corredoira E, Vieitez AM, Agnanostakis S, Costa R et al (2012) Chestnut (Chap. 19) In: Fruit Breeding, Ed: Badenes ML and Byrne DH, ISBN:978-1-4419-0762-2. https://doi.org/10.1007/978-1-4419-0763-9
Castroviejo S, Lainz M, Lopez G, Montserrat P, Munoz F, Paiva J, Villar L (1990) Flora Iberica. Plantas avsculares de la Peninsula Iberica e Islas Baleares. Real Jardin Botanico (CSIC 2) pp10-15. https://bibdigital.rjb.csic.es/records/?navigation=default &perpage=50&page=1&sort=_score&search=castan%C3%A9ac%C3%A9es&st=0&fulltext=0&bookmarks=0&child=0&refine%5BCategories%5D%5B%5D=Angiospermas#title
Davis PH (1982) Flora of Turkey and the East Aegean Islands, vol 7. Edinburgh University Press, Edinburgh, p 659
Fernández-López J, Alía R (2003) Chestnut, Castanea sativa. EUFORGEN, Technical guidelines for genetic conservation and use. https://www.euforgen.org/fileadmin//templates/euforgen.org/upload/Publications/Technical_guidelines/Technical_guidelines_Castanea_sativa.pdf
Ozer G, Makineci E (2022) Fruit characteristics, defoliation, forest floor and soil properties of sweet chestnut (Castanea sativa Mill.) Forests in Istanbul-Turkey. Turkish J of Agriculture and Forestry 46(5):703–716. https://journals.tubitak.gov.tr/agriculture/vol46/iss5/8/
doi: 10.55730/1300-011X.3036
FAOSTAT (2022) The Food and Agriculture Organization of the United Nations, Data-2021, Chestnut. http://www.fao.org/faostat/en/#data/QC Accessed 13.03.2022
Nadeem MA, Habyarimana E, Çiftçi V, Nawaz MA, Karaköy T, Comertpay G et al (2018) Characterization of genetic diversity in turkish common bean gene pool using phenotypic and whole-genome DArTseq-generated silicoDArT marker information. PLoS ONE 13(10):e0205363. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205363
doi: 10.1371/journal.pone.0205363 pubmed: 30308006 pmcid: 6181364
Daler S, Cangi R (2022) Characterization of grapevine (V. Vinifera L.) varieties grown in Yozgat province (Turkey) by simple sequence repeat (SSR) markers. Turkish J of Agriculture and Forestry 46(1):38–48. https://journals.tubitak.gov.tr/agriculture/vol46/iss1/4/
Abdelhamid S, Lê CL, Conedera M, Küpfer P (2014) The assessment of genetic diversity of Castanea species by RAPD, AFLP, ISSR, and SSR markers. Turkish J of Botany 38:835–850. https://journals.tubitak.gov.tr/botany/vol38/iss5/2/
doi: 10.3906/bot-1303-30
Nunziata A, Ruggieri V, Petriccione M, De Masi L (2020) Single nucleotide polymorphisms as practical molecular tools to support european chestnut agrobiodiversity management. Int J Mol Sci 21:4805. https://www.mdpi.com/1422-0067/21/13/4805
doi: 10.3390/ijms21134805 pubmed: 32646057 pmcid: 7370276
Mattioni C, Cherubini M, Micheli E, Villani F, Bucci G (2008) Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genetics & Genomes 4(3):563–574. https://link.springer.com/article/10.1007/s 11295-008-0132-6
Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill). Mol Breed 11:127–136. https://link.springer.com/article/10.1023/A:1022456013692
doi: 10.1023/A:1022456013692
Gobbin D, Hohl L, Conza L, Jermini M, Gessler C, Conedera M (2007) Microsatellite-based characterization of the Castanea sativa cultivar heritage of southern Switzerland. Genome 50:1089–1103. https://doi.org/10.1139/G07-086
doi: 10.1139/G07-086 pubmed: 18059537
Boccacci P, Akkak A, Marinoni DT, Bounous G, Botta R (2004) Typing european chestnut (C.sativa Mill.) Cultivars using oak simple sequence repeat markers. HortScience 39(6):1212–1216. https://www.researchgate.net/publication/277869046_Typing_European_Chestnut_Castanea_sativa_Mill_Cultivars_Using_Oak_Simple_Sequence_Repeat_Markers
doi: 10.21273/HORTSCI.39.6.1212
Pereira-Lorenzo S, Costa RML, Ramos-Cabrer AM, Ribeiro CAM et al (2010) Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula. Tree Genetics & Genomes 6(5):701–715. https://link.springer.com/article/10.1007/s 11295-010-0285-y
Martin MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010) Genetic diversity in european chestnut populations by means of genomic and genic microsatellite markers. Tree Genet Genomes 6:735–744. https://link.springer.com/article/ https://doi.org/10.1007/s11295-010-0287-9
doi: 10.1007/s11295-010-0287-9
Küçük E (2010) Characterization of chestnut (Castanea sativa Mill.) populations in Kazdağlari in situ consevation area by microsatellite (SSR) markers. Dissertation, University of Ege
Fernández-Cruz J, Fernández-López J (2012) Morphological, molecular and statistical tools to identify Castanea species and their hybrids. Conserv Gen 13(6):1589–1600. https://link.springer.com/article/10.1007/s 10592-012-0408-0
Fernández-Cruz J, Fernández-López J (2016) Genetic structure of wild sweet chestnut (Castanea sativa Mill.) populations in northwest of Spain and their differences with other European stands. Conserv Gen 17:949–967. https://link.springer.com/article/10.1007/s 105 92-016-0835-4
Mattioni C, Martin MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in european populations of Castanea sativa (Fagaceae): evidence for multiple glacial Refugia. Amer J of Botany 100(5):951–961. https://bsapubs.onlinelibrary.wiley.com/doi/full/ https://doi.org/10.3732/ajb.1200194
doi: 10.3732/ajb.1200194
Buck EJ, Hadonou M, James CJ, Blakesley D, Russell K (2013) Isolation and characterization of polymorphic microsatellites in european chestnut (Castanea sativa Mill). Mol Eco Notes 3:239–241. https://onlinelibrary.wiley.com/doi/full/ https://doi.org/10.1046/j.1471-8286.2003.00410.x
doi: 10.1046/j.1471-8286.2003.00410.x
Kubisiak TL, Nelson CD, Staton ME, Zhebentyayeva T et al (2013) A transcriptome-based genetic map of chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Gene Geno 9:557–571. https://link.springer.com/article/ https://doi.org/10.1007/s11295-012-0579-3
doi: 10.1007/s11295-012-0579-3
Janfaza S, Yousefzadeh H, Nasr SMH, Botta R, Abkenar AA, Marinoni DT (2017) Genetic diversity of Castanea sativa an endangered species in the Hyrcanian forest. Silva Fennica 51(1):article id 1705. https://doi.org/10.14214/sf.1705
Bouffartigue C, Debille S, Fabreguettes O, Cabrer AR et al (2020) Two main genetic clusters with high admixture between forest and cultivated chestnut (Castanea sativa Mill.) in France. Ann of Forest Sci 77(3):1–16. https://link.springer.com/article/10.1007/s 13595-020-00982-w
Alessandri S, Krznar M, Ajolfi D, Cabrer AMR, Pereira-Lorenzo S, Dondini L (2020) Genetic diversity of Castanea sativa Mill. accessions from the Tuscan-Emilian Apennines and Emilia Romagna Region (Italy). Agro 10:1319. https://www.mdpi.com/20734395/10/9/1319
Perkins MT, Zhebentyayeva T, Sisco PH, Craddock JH (2021) Genome-wide sequence-based genotyping supports a nonhybrid origin of Castanea alabamensis. Sys Bot 46(4):973–984. https://www.ingentaconnect.com/content/aspt/sb/2021/00000046/00000004/art00007;jsessionid=81fk73pllnk4u.x-ic-live-02
doi: 10.1600/036364421X16370109698524
Jiang XB, Fang Z, Lai JS, Wu Q, Wu J, Gong BC, Wang YP (2022) Genetic diversity and Population structure of chinese Chestnut (Castanea mollissima Blume) Cultivars revealed by GBS Resequencing. Plant-Basel 11(24):3524. https://www.mdpi.com/22237747/11/24/3524
doi: 10.3390/plants11243524
Nie XH, Wang ZH, Liu NW, Song L, Yan BQ et al (2021) Fingerprinting 146 chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers. J Int Agri 20(5):277–1286. https://www.sciencedirect.com/science/article/pii/S2095311920634001
Alcaide F, Solla A, Cuenca B, Martín M (2022) Molecular evidence of introgression of asian germplasm into a natural Castanea sativa forest in Spain. Forestry 95(1):95–104. https://academic.oup.com/forestry/article-abstract/95/1/95/6299836
doi: 10.1093/forestry/cpab030
Coutinho JP, Carvalho A, Martín JA, Brito L (2018) Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers. Mol B Re 45:133–142. https://doi.org/10.1007/s11033-018-4146-3
doi: 10.1007/s11033-018-4146-3
Baránek M, Meszáros M, Sochorová J, Čechová J, Raddová J (2012) Utility of retrotransposon-derived marker systems for differentiation of presumed clones of the apricot cultivar Velkopavlovická. Sci Hort 143:1–6. https://www.sciencedirect.com/science/article/pii/S0304423812002531
doi: 10.1016/j.scienta.2012.05.022
Mehmood A, Jaskani MJ, Ahmad S, Ahmad R (2013) Evaluation of genetic diversity in Open pollinated guava by iPBS primers. Pak J Agri Sci 50(4):591–597. http://www.pakjas.com.pk
Guo DL, Guo MX, Hou XG, Zhang GH (2014) Molecular diversity analysis of grape varieties based on iPBS markers. Biochem Sys and Eco 52:27–32. https://doi.org/10.1016/j.bse.2013.10.008
doi: 10.1016/j.bse.2013.10.008
Milovanov A, Zvyagin A, Daniyarov A, Kalendar R, Troshin L (2019) Genetic analysis of the grapevine genotypes of the russian Vitis ampelographic collection using iPBS markers. Genetica 147:91–101. https://doi.org/10.1007/s10709-019-00055-5
doi: 10.1007/s10709-019-00055-5 pubmed: 30783944
Carracedo MG, Tejera-Pérez H, Ferrer MH, Arias DJ, Pérez JAP (2021) Comparative assessment of microsatellite and retrotransposon-based markers for genetic characterization of commercial banana cultivars (Musa spp). Plant Breed 140:968–980. https://doi.org/10.1111/pbr.12960
doi: 10.1111/pbr.12960
Kirdok E, Ciftci YO (2016) Retrotransposon marker Systems as a Tool to analyze Molecular Diversity of Mediterranean Pistacia Species. Int J of Agri and Bio 18(3):601–606. https://www.researchgate.net/profile/Yelda_Ozden_Ciftci/publication/287643520
Gurlen A, Gundogdu M, Ozer G, Ercisli S, Duralija B (2020) Primary, Secondary Metabolites and Molecular Characterization of Hawthorn (Crataegus spp.) Genotypes. Agronomy 10:1731. https://www.mdpi.com/ 2073-4395/10/11/1731
Başak İ, Özer G, Muradoğlu F (2022) Morphometric traits and iPBS based molecular characterizations of walnut (Juglans regia L.) genotypes. Gen Res Crop Evol 69:2731–2743. https://link.springer.com/article/10.1007/s10722-022-01394-7
doi: 10.1007/s10722-022-01394-7
Gencer O, Serçe S (2022) Determination of morphological, pomological and molecular variations among apples in Niğde, Turkey using iPBS primers. J Agri Sci 28(2):296–306
Taş A, Gündoğdu M, Özer G (2023) Molecular and agromorphological characterization of C. mas L. genotypes in the fora of Turkey. Gen Res Crop Evol 70:639–654. https://doi.org/10.1007/s10722-022-01452-0
doi: 10.1007/s10722-022-01452-0
Serdar Ü, Akyüz B, Ceyhan V, Hazneci K, Mert C, Er E, Ertan E, Çoskuncu Savaş KS, Uylaşer V (2018) Horticultural characteristics of chestnut growing in Turkey. Erw Obst 60:239–245. https://library.unej.ac.id/repository/Erwerbs-Obstbau0A.pdf
doi: 10.1007/s10341-017-0364-4
Müftüoğlu B (2017) Researches on phenological stages and flower structures of some chestnut cultivars and genotypes. Dissertation, University of Uluda&#287
Eser H (2019) Morphological characterization and chemical composition of fruits of the chestnut cultivars and genotypes under the conditions of Bursa. Dissertation, University of Uluda&#287
Kumru A (2019) Determination of plant growth and morphological characteristics of some chestnut (Castanea sativa Mill.) cultivars/genotypes under the conditions of Bursa. Dissertation, University of Uluda&#287
Altın Y (2022) Kestane çeşit ve genotiplerinin çiçek tozu kalitesinin belirlenmesi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü (Master’s Thesis). http://hdl.handle.net/11452/25532
Soylu A (2004) Chestnut growing and specialities. Hasad Publication, İstanbul, Turkey
Uylaser V, Incedayı BK, Mert C, Soylu A (2009) A research on suitability of some chestnut cultivars for candied chestnut. Proceedings of the First European Congress on Chestnut. Acta Hort 866:571–572. https://www.actahort.org/books/866/866_77.htm
GEKA (2009) T.C. Güney Ege Kalkınma Ajansı. Aydın İli Kestane Yatırım Raporu. www.geka.org.tr Accessed 2.08.2022
MEB (2013) TC Milli Eğitim Bakanlığı, Bahçecilik: Kestane yetiştiriciliği. http://www.megep.meb.gov.tr/mte_program_modul/moduller_pdf/kestane%20yeti%C5%9Ftiricili%C4%9Fi.pdf Accessed 02.08.2022
NZOB (2022) Nazilli Ziraat Odası Başkanlığı Tarımsal Yayın ve Danışmanlık, Kestane Yetiştiriciliği. http://www.nzob.org.tr/sayfa.asp?id=99 Accessed 02.08.2022
Serdar U, Demirsoy H, Demirsoy L (2013) Two new sweet chestnut cultivars from the Anatolian region: ‘Unal’ and ‘Erfelek’. J Am Pomological Soc 67(3):175–181. https://www.researchgate.net/profile/UmitSerdar/publication/290344228_
Emreköy (2022) Emreköy Tarım ve Hayvancılık İşletmeciliği http://www.emrekoy.com.tr/kestane / Accessed 2.08.2022
Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Gen 103(2–3):455–461. https://link.springer.com/article/ 10.100 7/s001220100570
doi: 10.1007/s001220100570
Kalendar R, Antonius K, Smykal P (2010) iPBS auniversal method for DNA fingerprinting and retro transposon isolation. Theor Appl Genet 121:1419–1430. https://link.springer.com/article/10.1007/s 00122-010-1398-2
Rohlf FJ (2000) NTSYS-PC numerical taxonomy and multivariate analysis system version 2.01. Exeter Software. Setauket, New York
Jaccard P (1908) Nouvelles eserches sur la distribution Florale. Bull Soc Vaud Sci Nat 44:223–270
Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J of Mol Evol 19(2):153–170. https://link.springer.com/article/10.1007/BF02300753
doi: 10.1007/BF02300753
iMEC (2022) iMEC Online Tool, Online Marker Efficiency Calculator. https://irscope.shinyapps.io/iMEC/
Amiryousefi A, Hyvönen J, Poczai P (2018) iMEC: online marker efficiency calculator. Appl in Plant Sci 6(6):e1159. https://bsapubs.onlinelibrary.wiley.com/doi/full/ https://doi.org/10.1002/aps3.1159
doi: 10.1002/aps3.1159
Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nature Pro 1(5):2478–2484. https://www.nature.com/articles/nprot . 2006.377
Kalendar R (2011) The use of retrotransposon-based molecular markers to analyze genetic diversity. Ratar Povrt Field Veg Crop Res 48:261–274. http://hdl.handle.net/10138/42723
Kalendar R, Flavell AJ, Ellis TH, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106(4):520–530. https://www.nature.com/articles/hdy201093
doi: 10.1038/hdy.2010.93 pubmed: 20683483
Kalendar R, Schulman AH (2014) Transposon-Based Tagging: IRAP, REMAP, and iPBS. Mol. Plant Taxonomy. https://link.springer.com/protocol/10.1007/ 978-1-62703-767-9_12
Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotech Biotech Equ 32(2):261–285. https://www.tandfonline.com/doi/full/ https://doi.org/10.1080/13102818.2017.1400401
doi: 10.1080/13102818.2017.1400401

Auteurs

Emine Orhan (E)

Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, Erzurum, Türkiye, 25240, Turkey. eorhan@atauni.edu.tr.

Didem Kara (D)

Graduate School of Natural and Applied Sciences, Department of Agricultural Biotechnology, Graduate-Agricultural Engineer, Atatürk University, Erzurum, Türkiye, 25240, Turkey.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Classifications MeSH