Assessing the recovery of Y chromosome microsatellites with population genomic data using Papio and Theropithecus genomes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 08 2023
24 08 2023
Historique:
received:
03
04
2023
accepted:
18
08
2023
medline:
28
8
2023
pubmed:
25
8
2023
entrez:
24
8
2023
Statut:
epublish
Résumé
Y chromosome markers can shed light on male-specific population dynamics but for many species no such markers have been discovered and are available yet, despite the potential for recovering Y-linked loci from available genome sequences. Here, we investigated how effective available bioinformatic tools are in recovering informative Y chromosome microsatellites from whole genome sequence data. In order to do so, we initially explored a large dataset of whole genome sequences comprising individuals at various coverages belonging to different species of baboons (genus: Papio) using Y chromosome references belonging to the same genus and more distantly related species (Macaca mulatta). We then further tested this approach by recovering Y-STRs from available Theropithecus gelada genomes using Papio and Macaca Y chromosome as reference sequences. Identified loci were validated in silico by a) comparing within-species relationships of Y chromosome lineages and b) genotyping male individuals in available pedigrees. Each STR was selected not to extend in its variable region beyond 100 base pairs, so that loci can be developed for PCR-based genotyping of non-invasive DNA samples. In addition to assembling a first set of Papio and Theropithecus Y-specific microsatellite markers, we released TYpeSTeR, an easy-to-use script to identify and genotype Y chromosome STRs using population genomic data which can be modulated according to available male reference genomes and genomic data, making it widely applicable across taxa.
Identifiants
pubmed: 37620368
doi: 10.1038/s41598-023-40931-x
pii: 10.1038/s41598-023-40931-x
pmc: PMC10449864
doi:
Banques de données
figshare
['10.6084/m9.figshare.23810817.v2']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
13839Informations de copyright
© 2023. Springer Nature Limited.
Références
Gymrek, M., Golan, D., Rosset, S. & Erlich, Y. lobSTR: A short tandem repeat profiler for personal genomes. Genome Res. 22, 1154–1162 (2012).
pubmed: 22522390
pmcid: 3371701
doi: 10.1101/gr.135780.111
Willems, T. et al. Genome-wide profiling of heritable and de novo STR variations. Nat. Methods 14, 590–592 (2017).
pubmed: 28436466
pmcid: 5482724
doi: 10.1038/nmeth.4267
Allio, R. et al. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol. Ecol. Resour. 20, 892–905 (2020).
pubmed: 32243090
pmcid: 7497042
doi: 10.1111/1755-0998.13160
Jin, J.-J. et al. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241 (2020).
pubmed: 32912315
pmcid: 7488116
doi: 10.1186/s13059-020-02154-5
Singh, L. N. et al. MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLOS Comput. Biol. 17, e1009594 (2021).
pubmed: 34762648
pmcid: 8610268
doi: 10.1371/journal.pcbi.1009594
Cechova, M. et al. Dynamic evolution of great ape Y chromosomes. Proc. Natl. Acad. Sci. U. S. A. 117, 26273–26280 (2020).
pubmed: 33020265
pmcid: 7585023
doi: 10.1073/pnas.2001749117
Hallast, P. & Jobling, M. A. The Y chromosomes of the great apes. Hum. Genet. 136, 511–528 (2017).
pubmed: 28265767
doi: 10.1007/s00439-017-1769-8
Kuang, W.-M. et al. The Origin and population history of the endangered golden snub-nosed monkey (Rhinopithecus roxellana). Mol. Biol. Evol. 36, 487–499 (2018).
doi: 10.1093/molbev/msy220
Matsudaira, K. et al. Whole mitochondrial genomic and Y-chromosomal phylogenies of burmese long-tailed macaque (Macaca fascicularis aurea) suggest ancient hybridization between fascicularis and sinica species groups. J. Hered. 109, 360–371 (2018).
pubmed: 29186474
doi: 10.1093/jhered/esx108
Raudsepp, T., Finno, C. J., Bellone, R. R. & Ten Petersen, J. L. years of the horse reference genome: Insights into equine biology, domestication and population dynamics in the post-genome era. Anim. Genet. 50, 569–597 (2019).
pubmed: 31568563
pmcid: 6825885
doi: 10.1111/age.12857
VarGoats Consortium et al. Geographical contrasts of Y-chromosomal haplogroups from wild and domestic goats reveal ancient migrations and recent introgressions. Mol. Ecol. 31, 4364–4380 (2022).
doi: 10.1111/mec.16579
Chen, H., Lu, Y., Lu, D. & Xu, S. Y-LineageTracker: A high-throughput analysis framework for Y-chromosomal next-generation sequencing data. BMC Bioinform. 22, 114 (2021).
doi: 10.1186/s12859-021-04057-z
Jobling, M. A. & Tyler-Smith, C. The human Y chromosome: An evolutionary marker comes of age. Nat. Rev. Genet. 4, 598–612 (2003).
pubmed: 12897772
doi: 10.1038/nrg1124
Karmin, M. et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 25, 459–466 (2015).
pubmed: 25770088
pmcid: 4381518
doi: 10.1101/gr.186684.114
Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA sequences into reference phylogenies. Mol. Biol. Evol. 39, msac017 (2022).
pubmed: 35084493
pmcid: 8857924
doi: 10.1093/molbev/msac017
Tseng, B. et al. Y-SNP Haplogroup hierarchy finder: A web tool for Y-SNP haplogroup assignment. J. Hum. Genet. 67, 487–493 (2022).
pubmed: 35347230
doi: 10.1038/s10038-022-01033-0
Gopinath, S. et al. Developmental validation of the Yfiler(®) Plus PCR Amplification Kit: An enhanced Y-STR multiplex for casework and database applications. Forensic Sci. Int. Genet. 24, 164–175 (2016).
pubmed: 27459350
doi: 10.1016/j.fsigen.2016.07.006
Thompson, J. M. et al. Developmental validation of the PowerPlex® Y23 system: A single multiplex Y-STR analysis system for casework and database samples. Forensic Sci. Int. Genet. 7, 240–250 (2013).
pubmed: 23337322
doi: 10.1016/j.fsigen.2012.10.013
Minhós, T. et al. Genetic consequences of human forest exploitation in two colobus monkeys in Guinea Bissau. Biol. Conserv. 194, 194–208 (2016).
doi: 10.1016/j.biocon.2015.12.019
Morin, P. A., Chambers, K. E., Boesch, C. & Vigilant, L. Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Mol. Ecol. 10, 1835–1844 (2001).
pubmed: 11472550
doi: 10.1046/j.0962-1083.2001.01308.x
Mulero, J. J. et al. Development and validation of the AmpFℓSTR® MiniFilerTM PCR amplification Kit: A MiniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA*. J. Forensic Sci. 53, 838–852 (2008).
pubmed: 18540972
doi: 10.1111/j.1556-4029.2008.00760.x
Refseth, U. H., Fangan, B. M. & Jakobsen, K. S. Hybridization capture of microsatellites directly from genomic DNA. Electrophoresis 18, 1519–1523 (1997).
pubmed: 9378114
doi: 10.1002/elps.1150180905
White, P. S., Tatum, O. L., Deaven, L. L. & Longmire, J. L. New, male-specific microsatellite markers from the human Y chromosome. Genomics 57, 433–437 (1999).
pubmed: 10329011
doi: 10.1006/geno.1999.5782
Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
pubmed: 9862982
pmcid: 148217
doi: 10.1093/nar/27.2.573
Trede, F. et al. A refined panel of 42 microsatellite loci to universally genotype catarrhine primates. Ecol. Evol. 11, 498–505 (2021).
pubmed: 33437445
doi: 10.1002/ece3.7069
Rogers, J. et al. The Comparative Genomics and Complex Population History of Papio Baboons. (2019).
Robinson, J. A. et al. Analysis of 100 high-coverage genomes from a pedigreed captive baboon colony. Genome Res. 29, 848–856 (2019).
pubmed: 30926611
pmcid: 6499309
doi: 10.1101/gr.247122.118
Wu, F. L. et al. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. PLoS Biol. 18, e3000838 (2020).
pubmed: 32804933
pmcid: 7467331
doi: 10.1371/journal.pbio.3000838
Vilgalys, T. P. et al. Selection against admixture and gene regulatory divergence in a long-term primate field study. Science 377, 635–641 (2022).
pubmed: 35926022
pmcid: 9682493
doi: 10.1126/science.abm4917
Wall, J. D. et al. Genomewide ancestry and divergence patterns from low-coverage sequencing data reveal a complex history of admixture in wild baboons. Mol. Ecol. 25, 3469–3483 (2016).
pubmed: 27145036
pmcid: 5306399
doi: 10.1111/mec.13684
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
pubmed: 28387841
doi: 10.1093/molbev/msx116
Chiou, K. L. et al. Genomic signatures of high-altitude adaptation and chromosomal polymorphism in geladas. Nat. Ecol. Evol. 6, 630–643 (2022).
pubmed: 35332281
pmcid: 9090980
doi: 10.1038/s41559-022-01703-4
Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321–3323 (1973).
pubmed: 4519626
pmcid: 427228
doi: 10.1073/pnas.70.12.3321
Cortez, D. et al. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488–493 (2014).
pubmed: 24759410
doi: 10.1038/nature13151
Hughes, J. F. et al. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483, 82–86 (2012).
pubmed: 22367542
pmcid: 3292678
doi: 10.1038/nature10843
Erler, A., Stoneking, M. & Kayser, M. Development of Y-chromosomal microsatellite markers for nonhuman primates. Mol. Ecol. 13, 2921–2930 (2004).
pubmed: 15367109
doi: 10.1111/j.1365-294X.2004.02304.x
Jolly, C. J., Burrell, A. S., Phillips-Conroy, J. E., Bergey, C. & Rogers, J. Kinda baboons (Papio kindae) and grayfoot chacma baboons (P. ursinus griseipes) hybridize in the Kafue river valley, Zambia. Am. J. Primatol. 73, 291–303 (2011).
pubmed: 21274900
doi: 10.1002/ajp.20896
Lawson Handley, L. J., Hammond, R. L., Emaresi, G., Reber, A. & Perrin, N. Low Y chromosome variation in Saudi-Arabian hamadryas baboons (Papio hamadryas hamadryas). Heredity 96, 298–303 (2006).
pubmed: 16508662
doi: 10.1038/sj.hdy.6800803
Zhou, Y. et al. Eighty million years of rapid evolution of the primate Y chromosome. Nat. Ecol. Evol. 7, 1114–1130 (2023).
pubmed: 37268856
doi: 10.1038/s41559-022-01974-x
Butler, J. M. Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers (Elsevier, 2005).
Kayser, M. et al. A comprehensive survey of human Y-chromosomal microsatellites. Am. J. Hum. Genet. 74, 1183–1197 (2004).
pubmed: 15195656
pmcid: 1182082
doi: 10.1086/421531
Kuderna, L. F. K. et al. A global catalog of whole-genome diversity from 233 primate species. Science https://doi.org/10.1101/2023.05.02.538995 (2023).
doi: 10.1101/2023.05.02.538995
pubmed: 37262173
Takayoshi Shotake, W. S., Takeshi, A. & Yoshi, K. Genetic diversity within and among gelada (Theropithecus gelada) populations based on mitochondrial DNA analysis. Anthr. Sci 124, 157–167 (2016).
doi: 10.1537/ase.160717
Zinner, D. et al. Phylogeography, mitochondrial DNA diversity, and demographic history of geladas (Theropithecus gelada). PLoS ONE 13, e0202303 (2018).
pubmed: 30138418
pmcid: 6107150
doi: 10.1371/journal.pone.0202303
Santander, C. et al. Genomic variation in baboons from central Mozambique unveils complex evolutionary relationships with other Papio species. BMC Ecol. Evol. 22, 44 (2022).
pubmed: 35410131
pmcid: 8996594
doi: 10.1186/s12862-022-01999-7
Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems (IEEE, 2019). https://doi.org/10.1109/ipdps.2019.00041 .
doi: 10.1109/ipdps.2019.00041
Batra, S. S. et al. Accurate assembly of the olive baboon (Papio anubis) genome using long-read and Hi-C data. Gigascience https://doi.org/10.1093/gigascience/giaa134 (2020).
doi: 10.1093/gigascience/giaa134
pubmed: 33283855
pmcid: 7719865
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience https://doi.org/10.1093/gigascience/giab008 (2021).
doi: 10.1093/gigascience/giab008
pubmed: 33594436
pmcid: 7931820
Picard toolkit. http://broadinstitute.github.io/picard (2019).
Ferreira da Silva, M. J. et al. Disrupted dispersal and its genetic consequences: Comparing protected and threatened baboon populations (Papio papio) in West Africa. PLoS One 13, e0194189 (2018).
pubmed: 29614097
pmcid: 5882123
doi: 10.1371/journal.pone.0194189
Bruvo, R., Michiels, N. K., D’Souza, T. G. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101–2106 (2004).
pubmed: 15189230
doi: 10.1111/j.1365-294X.2004.02209.x
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
pubmed: 24688859
pmcid: 3961149
doi: 10.7717/peerj.281
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712
doi: 10.1016/S0022-2836(05)80360-2
Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-3.0. (1996).
You, F. M. et al. BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinform. 9, 253 (2008).
doi: 10.1186/1471-2105-9-253
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943
doi: 10.1093/bioinformatics/btw313