Chromosome-level genome assembly of Babesia caballi reveals diversity of multigene families among Babesia species.

Babesia caballi Comparative genomics Equine babesiosis Multigene expansion

Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
24 Aug 2023
Historique:
received: 14 01 2023
accepted: 27 07 2023
medline: 28 8 2023
pubmed: 25 8 2023
entrez: 24 8 2023
Statut: epublish

Résumé

Babesia caballi is an intraerythrocytic parasite from the phylum Apicomplexa, capable of infecting equids and causing equine piroplasmosis. However, since there is limited genome information available on B. caballi, molecular mechanisms involved in host specificity and pathogenicity of this species have not been fully elucidated yet. Genomic DNA from a B. caballi subclone was purified and sequenced using both Illumina and Nanopore technologies. The resulting assembled sequence consisted of nine contigs with a size of 12.9 Mbp, rendering a total of 5,910 protein-coding genes. The phylogenetic tree of Apicomplexan species was reconstructed using 263 orthologous genes. We identified 481 ves1-like genes and named "ves1c". In contrast, expansion of the major facilitator superfamily (mfs) observed in closely related B. bigemina and B. ovata species was not found in B. caballi. A set of repetitive units containing an open reading frame with a size of 297 bp was also identified. We present a chromosome-level genome assembly of B. caballi. Our genomic data may contribute to estimating gene expansion events involving multigene families and exploring the evolution of species from this genus.

Sections du résumé

BACKGROUND BACKGROUND
Babesia caballi is an intraerythrocytic parasite from the phylum Apicomplexa, capable of infecting equids and causing equine piroplasmosis. However, since there is limited genome information available on B. caballi, molecular mechanisms involved in host specificity and pathogenicity of this species have not been fully elucidated yet.
RESULTS RESULTS
Genomic DNA from a B. caballi subclone was purified and sequenced using both Illumina and Nanopore technologies. The resulting assembled sequence consisted of nine contigs with a size of 12.9 Mbp, rendering a total of 5,910 protein-coding genes. The phylogenetic tree of Apicomplexan species was reconstructed using 263 orthologous genes. We identified 481 ves1-like genes and named "ves1c". In contrast, expansion of the major facilitator superfamily (mfs) observed in closely related B. bigemina and B. ovata species was not found in B. caballi. A set of repetitive units containing an open reading frame with a size of 297 bp was also identified.
CONCLUSIONS CONCLUSIONS
We present a chromosome-level genome assembly of B. caballi. Our genomic data may contribute to estimating gene expansion events involving multigene families and exploring the evolution of species from this genus.

Identifiants

pubmed: 37620766
doi: 10.1186/s12864-023-09540-w
pii: 10.1186/s12864-023-09540-w
pmc: PMC10463595
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

483

Subventions

Organisme : the Japan Racing Association
ID : 2-3272

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Nucleic Acids Res. 2013 Jul;41(Web Server issue):W123-8
pubmed: 23700307
Annu Rev Entomol. 2015 Jan 7;60:561-80
pubmed: 25564746
Nucleic Acids Res. 2015 Jan;43(Database issue):D240-9
pubmed: 25399418
Nucleic Acids Res. 2012 Oct;40(18):9102-14
pubmed: 22833609
J Am Vet Med Assoc. 1966 Feb 15;148(4):407-10
pubmed: 4957951
PLoS Pathog. 2020 Oct 5;16(10):e1008917
pubmed: 33017449
Bioinformatics. 2009 May 1;25(9):1105-11
pubmed: 19289445
BMC Genomics. 2017 Oct 27;18(1):832
pubmed: 29078748
Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419
pubmed: 33125078
Mol Biochem Parasitol. 1993 Jul;60(1):121-32
pubmed: 8366886
Genome Res. 2009 Jun;19(6):1117-23
pubmed: 19251739
Pathogens. 2019 Jun 11;8(2):
pubmed: 31212587
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Parasitol Res. 1999 Mar;85(3):171-5
pubmed: 9951958
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
Mol Microbiol. 2006 Jan;59(2):402-14
pubmed: 16390438
Ticks Tick Borne Dis. 2021 Sep;12(5):101776
pubmed: 34271342
PLoS Pathog. 2007 Oct 19;3(10):1401-13
pubmed: 17953480
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
pubmed: 12136088
Bioinformatics. 2008 Mar 1;24(5):637-44
pubmed: 18218656
Mol Microbiol. 2007 Aug;65(4):1092-105
pubmed: 17640278
Nucleic Acids Res. 2013 Jul;41(12):e121
pubmed: 23598997
Nucleic Acids Res. 1997 Mar 1;25(5):955-64
pubmed: 9023104
Bioinformatics. 2005 Jun;21 Suppl 1:i351-8
pubmed: 15961478
J Vet Intern Med. 2013 Nov-Dec;27(6):1334-46
pubmed: 24033559
Mol Biochem Parasitol. 2010 Jun;171(2):81-8
pubmed: 20226217
Biosci Microbiota Food Health. 2016;35(4):173-184
pubmed: 27867804
Mol Biol Evol. 1987 Jul;4(4):406-25
pubmed: 3447015
Parasit Vectors. 2016 Oct 27;9(1):564
pubmed: 27784333
J Immunol. 2000 Feb 15;164(4):2037-45
pubmed: 10657656
Nucleic Acids Res. 1999 Jan 15;27(2):573-80
pubmed: 9862982
Nucleic Acids Res. 2014 Jun;42(11):7113-31
pubmed: 24799432
Parasit Vectors. 2020 Jul 29;13(1):378
pubmed: 32727571
PLoS Pathog. 2022 Sep 15;18(9):e1010770
pubmed: 36107982
Pathogens. 2020 Nov 08;9(11):
pubmed: 33171698
Vet Parasitol. 2009 Feb 5;159(2):112-20
pubmed: 19019541
Genome Res. 2017 May;27(5):722-736
pubmed: 28298431
Bioinformatics. 2005 Sep 15;21(18):3674-6
pubmed: 16081474
J Microsc. 2018 Jul;271(1):84-97
pubmed: 29608216
BMC Genomics. 2013 Nov 06;14:763
pubmed: 24195453
Mol Cell. 2000 Jan;5(1):153-62
pubmed: 10678177
Rev Bras Parasitol Vet. 2017 Jul-Sep;26(3):331-339
pubmed: 28977247
Genome Biol Evol. 2013;5(3):468-83
pubmed: 23395982
Parasitology. 2013 Aug;140(9):1096-103
pubmed: 23673249
J Mol Biol. 2001 Jan 19;305(3):567-80
pubmed: 11152613
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W540-3
pubmed: 15980530
Vet Parasitol. 2016 Oct 15;229:99-106
pubmed: 27809988
PLoS One. 2014 Nov 19;9(11):e112963
pubmed: 25409509
Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129
pubmed: 28472432
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
J Vet Med Sci. 1997 Jun;59(6):479-81
pubmed: 9234227
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147

Auteurs

Akihiro Ochi (A)

Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan.

Taishi Kidaka (T)

International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.

Hassan Hakimi (H)

National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

Masahito Asada (M)

National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.

Junya Yamagishi (J)

International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan. junya@czc.hokudai.ac.jp.
Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan. junya@czc.hokudai.ac.jp.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH