Effects of Nutrients on the Growth of and Free Exopolysaccharide Biosynthesis by Streptococcus thermophilus 937 in a Chemically Defined Medium.
Journal
Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448
Informations de publication
Date de publication:
27 Aug 2023
27 Aug 2023
Historique:
received:
06
02
2022
accepted:
18
07
2023
medline:
29
8
2023
pubmed:
27
8
2023
entrez:
27
8
2023
Statut:
epublish
Résumé
The free exopolysaccharide (f-EPS) produced by Streptococcus thermophilus is a natural texture modifier with health-promoting properties and has thus become one of the most interesting metabolites for researchers. The present work aimed to further understand the nutritional requirements for the growth of and the f-EPS production by S. thermophilus. The types and concentrations of compounds in the complete chemically defined medium were changed in turn to evaluate the effects of single nutrients on the growth of and f-EPS production by S. thermophilus 937. The results showed that cysteine, glutamine, histidine, methionine, tryptophan, tyrosine, leucine, isoleucine, and valine played an important role in maintaining the rapid and stable growth of S. thermophilus 937. S. thermophilus 937 also required calcium pantothenate, niacin, pyridoxine, riboflavin, and thiamine hydrochloride as essential nutrients for growth. Increases in the concentrations of lactose, glutamate, histidine, or isoleucine significantly increased the production of free exopolysaccharide by S. thermophilus 937, and when the lactose concentration increased to 20 g·L
Identifiants
pubmed: 37634211
doi: 10.1007/s00284-023-03421-x
pii: 10.1007/s00284-023-03421-x
doi:
Substances chimiques
Histidine
4QD397987E
Isoleucine
04Y7590D77
Lactose
J2B2A4N98G
Amino Acids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
331Subventions
Organisme : National Natural Science Foundation of China
ID : 31972094
Organisme : City-school Cooperation to Build a Scientific and Technological Innovation Platform
ID : YZ2020265
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Cheng X, Huang L, Li KT (2019) Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. World J Microbiol Biotechnol 35(5):1–13. https://doi.org/10.1007/s11274-019-2645-6
doi: 10.1007/s11274-019-2645-6
Zhang S, Zhang LW (2012) Effect of exopolysaccharide producing lactic acid bacterial on the gelation and texture properties of yogurt. In: Chen R, Sun D, Sung W-P (eds) Advanced Materials Research. Trans Tech Publications, Switzerland, pp 890–893
Oluk AC, Güven M, Hayaloglu AA (2014) Proteolysis texture and microstructure of low-fat Tulum cheese affected by exopolysaccharide-producing cultures during ripening. Int J Food Sci Tech 49(2):435–443. https://doi.org/10.1111/ijfs.12320
doi: 10.1111/ijfs.12320
Yang T, Wu K, Wang F, Liang X, Liu Q, Li G, Li Q (2014) Effect of exopolysaccharides from lactic acid bacteria on the texture and microstructure of buffalo yoghurt. Int Dairy J 34(2):252–256. https://doi.org/10.1016/j.idairyj.2013.08.007
doi: 10.1016/j.idairyj.2013.08.007
Mizuno H, Tomotsune K, Islam MA, Funabashi R, Albarracin L, Ikeda-Ohtsubo W, Aso H, Takahashi H, Kimura K, Villena J, Sasaki Y, Kitazawa H (2020) Exopolysaccharides from Streptococcus thermophilus ST538 modulate the antiviral innate immune response in porcine intestinal epitheliocytes. Front Microbiol 11:894. https://doi.org/10.3389/fmicb.2020.00894
doi: 10.3389/fmicb.2020.00894
pubmed: 32508770
pmcid: 7248278
Minic Z, Marie C, Delorme C, Faurie JM, Mercier G, Ehrlich D, Renault P (2007) Control of EpsE, the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus, by EpsD tyrosine kinase. J Bacteriol 189(4):1351–1357. https://doi.org/10.1128/JB.01122-06
doi: 10.1128/JB.01122-06
pubmed: 16980450
Madhubasani GBL, Prasanna PHP, Chandrasekara A, Gunasekara DCS, Senadeera P, Chandramali DVP, Vidanarachchi JK (2019) Exopolysaccharide producing starter cultures positively influence on microbiological, physicochemical, and sensory properties of probiotic goats’ milk set-yoghurt. J Food Process Pres 44(3):1–8. https://doi.org/10.1111/jfpp.14361
doi: 10.1111/jfpp.14361
Wang J, Wu T, Fang X, Yang Z (2019) Manufacture of low-fat Cheddar cheese by exopolysaccharide-producing Lactobacillus plantarum JLK0142 and its functional properties. J Dairy Sci 102(5):3825–3838. https://doi.org/10.3168/jds.2018-15154
doi: 10.3168/jds.2018-15154
pubmed: 30827553
Xu Y, Coda R, Holopainen-Mantila U, Laitila A, Katina K, Tenkanen M (2019) Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Res Int 115(1):191–199. https://doi.org/10.1016/j.foodres.2018.08.054
doi: 10.1016/j.foodres.2018.08.054
pubmed: 30599931
Shao L, Wu Z, Zhang H, Chen W, Ai L, Guo B (2014) Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr Polym 107(17):51–56. https://doi.org/10.1016/j.carbpol.2014.02.037
doi: 10.1016/j.carbpol.2014.02.037
pubmed: 24702917
Sun N, Liu H, Liu S, Zhang X, Chen P, Li W, Xu X, Tian W (2018) Purification, preliminary structure and antitumor activity of exopolysaccharide produced by Streptococcus thermophilus CH9. Molecules. https://doi.org/10.3390/molecules23112898
doi: 10.3390/molecules23112898
pubmed: 30591701
pmcid: 6337629
Chaves AC, Fernandez M, Lerayer AL, Mierau I, Kleerebezem M, Hugenholtz J (2002) Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl Environ Microbiol 68(11):5656–5662. https://doi.org/10.1128/aem.68.11.5656-5662.2002
doi: 10.1128/aem.68.11.5656-5662.2002
pubmed: 12406762
pmcid: 129919
Li D, Li J, Zhao F, Wang G, Qin Q, Hao Y (2016) The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05–34 in milk-based medium. Food Chem 197(Pt A):367–372. https://doi.org/10.1016/j.foodchem.2015.10.129
doi: 10.1016/j.foodchem.2015.10.129
pubmed: 26616962
Degeest B, De Vuyst L (1999) Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl Environ Microbiol 65(7):2863–2870
doi: 10.1128/AEM.65.7.2863-2870.1999
pubmed: 10388677
Zisu B, Shah N (2003) Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J Dairy Sci 86(11):3405–3415
doi: 10.3168/jds.S0022-0302(03)73944-7
pubmed: 14672169
Vaningelgem F, Zamfir M, Adriany T, De Vuyst L (2004) Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium. J Appl Microbiol 97(6):1257–1273. https://doi.org/10.1111/j.1365-2672.2004.02418.x
doi: 10.1111/j.1365-2672.2004.02418.x
pubmed: 15546417
Shene C, Canquil N, Bravo S, Rubilar M (2008) Production of the exopolysaccharides by Streptococcus thermophilus: effect of growth conditions on fermentation kinetics and intrinsic viscosity. Int J Food Microbiol 124(3):279–284. https://doi.org/10.1016/j.ijfoodmicro.2008.03.013
doi: 10.1016/j.ijfoodmicro.2008.03.013
pubmed: 18456357
Cerning J, Bouillanne C, Landon M, Desmazeaud M (1992) Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J Dairy Sci 75(3):692–699
doi: 10.3168/jds.S0022-0302(92)77805-9
Pintado AIE, Ferreira JA, Pintado MME, Gomes AMP, Malcata FX, Coimbra MA (2020) Efficiency of purification methods on the recovery of exopolysaccharides from fermentation media. Carbohydr Polym 231(3):115703. https://doi.org/10.1016/j.carbpol.2019.115703
doi: 10.1016/j.carbpol.2019.115703
pubmed: 31888825
Torino MI, Hebert EM, Mozzi F, Font de Valdez G (2005) Growth and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in an adenine-supplemented chemically defined medium. J Appl Microbiol 99(5):1123–1129. https://doi.org/10.1111/j.1365-2672.2005.02701.x
doi: 10.1111/j.1365-2672.2005.02701.x
pubmed: 16238742
Otto R, ten Brink B, Veldkamp H, Konings WN (1983) The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris. FEMS Microbiol Lett 16(1):69–74
doi: 10.1111/j.1574-6968.1983.tb00261.x
Letort C, Juillard V (2001) Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J Appl Microbiol 91(6):1023–1029
doi: 10.1046/j.1365-2672.2001.01469.x
pubmed: 11851809
Vuyst D, de Ven V (1998) Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J Appl Microbiol 84(6):1059–1068
doi: 10.1046/j.1365-2672.1998.00445.x
pubmed: 9717291
Dubios M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:250–256
Grobben GJ, Chin-Joe I, Kitzen VA, Boels IC, Boer F, Sikkema J, Smith MR, de Bont JA (1998) Enhancement of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a simplified defined medium. Appl Environ Microbiol 64(4):1333–1337
doi: 10.1128/AEM.64.4.1333-1337.1998
pubmed: 16349540
pmcid: 106151
Wu Q, Shah NP (2018) Comparative mRNA-Seq analysis reveals the improved EPS production machinery in Streptococcus thermophilus ASCC 1275 during optimized milk fermentation. Front Microbiol 9(9):445. https://doi.org/10.3389/fmicb.2018.00445
doi: 10.3389/fmicb.2018.00445
pubmed: 29593689
pmcid: 5859087
Svensson M, Waak E, Svensson U, Rådström PJAEM (2005) Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk. App Environ Microbiol 71(10):6398–6400
doi: 10.1128/AEM.71.10.6398-6400.2005
Svensson M, Lohmeier-Vogel E, Waak E, Svensson U, Radstrom P (2007) Altered nucleotide sugar metabolism in Streptococcus thermophilus interferes with nitrogen metabolism. Int J Food Microbiol 113(2):195–200. https://doi.org/10.1016/j.ijfoodmicro.2006.06.032
doi: 10.1016/j.ijfoodmicro.2006.06.032
pubmed: 16996629
Grobben GJ, Chin-Joe I, Kitzen VA, Boels IC, Bont JAMDJA, Microbiology E (1998) Enhancement of exopolysaccharide production by lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a simplified defined medium. Appl Environ Microb 64(4):1333–1337
doi: 10.1128/AEM.64.4.1333-1337.1998
Wa Y, Zhang C, Sun G, Qu H, Chen D, Huang Y, Gu R (2022) Effect of amino acids on free exopolysaccharide biosynthesis by Streptococcus thermophilus 937 in chemically defined medium. J Dairy Sci 105(8):6460–6468. https://doi.org/10.3168/jds.2022-21814
doi: 10.3168/jds.2022-21814
pubmed: 35691747